These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31229386)
1. Experimental investigation of the temperature elevation in bone drilling using conventional and vibration-assisted methods. Bai X; Hou S; Li K; Qu Y; Zhang T Med Eng Phys; 2019 Jul; 69():1-7. PubMed ID: 31229386 [TBL] [Abstract][Full Text] [Related]
2. Influence of parameters on temperature rise and chips morphology in low-frequency vibration-assisted bone drilling. Han Y; Lv Q; Song Y; Zhang Q Med Eng Phys; 2022 May; 103():103791. PubMed ID: 35500992 [TBL] [Abstract][Full Text] [Related]
3. Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies. Bai X; Hou S; Li K; Qu Y; Zhu W Med Eng Phys; 2020 Sep; 83():73-81. PubMed ID: 32807351 [TBL] [Abstract][Full Text] [Related]
4. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography. Alam K; Silberschmidt VV Technol Health Care; 2014 Jan; 22(2):243-52. PubMed ID: 24837054 [TBL] [Abstract][Full Text] [Related]
5. An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone. Shakouri E; Sadeghi MH; Karafi MR; Maerefat M; Farzin M Proc Inst Mech Eng H; 2015 Feb; 229(2):137-49. PubMed ID: 25767150 [TBL] [Abstract][Full Text] [Related]
6. Towards understanding the cutting temperature in ultrasonic vibration-assisted drilling based on the dynamic contact characteristics between the cutting edge and workpiece. Sun YJ; Gong H; Gui SY; Yuan SM; Wang Y Ultrasonics; 2023 Dec; 135():107131. PubMed ID: 37556915 [TBL] [Abstract][Full Text] [Related]
7. Experimental investigations of drilling temperature of high-energy ultrasonically assisted bone drilling. Sun Z; Wang Y; Xu K; Zhou G; Liang C; Qu J Med Eng Phys; 2019 Mar; 65():1-7. PubMed ID: 30665747 [TBL] [Abstract][Full Text] [Related]
8. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling. Gupta V; Pandey PM Med Eng Phys; 2016 Nov; 38(11):1330-1338. PubMed ID: 27639655 [TBL] [Abstract][Full Text] [Related]
9. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques. Gupta V; Singh RP; Pandey PM; Gupta R Proc Inst Mech Eng H; 2020 Apr; 234(4):398-411. PubMed ID: 32026750 [TBL] [Abstract][Full Text] [Related]
10. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Wang Y; Cao M; Zhao X; Zhu G; McClean C; Zhao Y; Fan Y Med Eng Phys; 2014 Nov; 36(11):1408-15. PubMed ID: 24908355 [TBL] [Abstract][Full Text] [Related]
11. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone. Shakouri E; Sadeghi MH; Maerefat M; Shajari S Proc Inst Mech Eng H; 2014 Apr; 228(4):330-41. PubMed ID: 24569922 [TBL] [Abstract][Full Text] [Related]
12. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Alam K; Mitrofanov AV; Silberschmidt VV Med Eng Phys; 2011 Mar; 33(2):234-9. PubMed ID: 21044856 [TBL] [Abstract][Full Text] [Related]
13. Reduction thermal damage to cortical bone using ultrasonically-assisted drilling. Zheng Q; Xia L; Zhang X; Zhang C; Hu Y Technol Health Care; 2018; 26(5):843-856. PubMed ID: 30103355 [TBL] [Abstract][Full Text] [Related]
14. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone. Gupta V; Pandey PM; Gupta RK; Mridha AR Proc Inst Mech Eng H; 2017 Mar; 231(3):189-196. PubMed ID: 28116985 [TBL] [Abstract][Full Text] [Related]
15. Investigation of transient machining in the cortical bone drilling process by conventional and axial vibration-assisted drilling methods. Bai X; Qiao G; Liu Z; Zhu W Proc Inst Mech Eng H; 2023 Apr; 237(4):489-501. PubMed ID: 36927106 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation and experimental study for ultrasonic vibration-assisted drilling of SiCp/AL6063. Ji X; Bai F; Jiang J; Fu H; Sun Q; Zhu W Math Biosci Eng; 2023 Jan; 20(2):2651-2668. PubMed ID: 36899551 [TBL] [Abstract][Full Text] [Related]
17. In-vitro experimental study of histopathology of bone in vibrational drilling. Alam K; Al-Ghaithi A; Piya S; Saleem A Med Eng Phys; 2019 May; 67():78-87. PubMed ID: 30981608 [TBL] [Abstract][Full Text] [Related]
18. Investigation of thermal aspects of high-speed drilling of bone by theoretical and experimental approaches. Shakouri E; Ghorbani Nezhad M; Ghorbani P; Khosravi-Nejad F Phys Eng Sci Med; 2020 Sep; 43(3):959-972. PubMed ID: 32632571 [TBL] [Abstract][Full Text] [Related]
19. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters. Chen YC; Tu YK; Tsai YJ; Tsai YS; Yen CY; Yang SC; Hsiao CK Comput Methods Programs Biomed; 2018 Aug; 162():253-261. PubMed ID: 29903492 [TBL] [Abstract][Full Text] [Related]
20. Thermal changes during drilling in human femur by rotary ultrasonic bone drilling machine: A histologic and ultrastructural study. Singh RP; Pandey PM; Mir MA; Mridha AR J Biomed Mater Res B Appl Biomater; 2022 May; 110(5):1023-1033. PubMed ID: 34854533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]