BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31229761)

  • 1. Fusing learned representations from Riesz Filters and Deep CNN for lung tissue classification.
    Joyseeree R; Otálora S; Müller H; Depeursinge A
    Med Image Anal; 2019 Aug; 56():172-183. PubMed ID: 31229761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale lung texture signature learning using the Riesz transform.
    Depeursinge A; Foncubierta-Rodriguez A; Van de Ville D; Müller H
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):517-24. PubMed ID: 23286170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep CNN models for pulmonary nodule classification: Model modification, model integration, and transfer learning.
    Zhao X; Qi S; Zhang B; Ma H; Qian W; Yao Y; Sun J
    J Xray Sci Technol; 2019; 27(4):615-629. PubMed ID: 31227682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotation-covariant tissue analysis for interstitial lung diseases using learned steerable filters: Performance evaluation and relevance for diagnostic aid.
    Joyseeree R; Müller H; Depeursinge A
    Comput Med Imaging Graph; 2018 Mar; 64():1-11. PubMed ID: 29397275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies.
    Nasrullah N; Sang J; Alam MS; Mateen M; Cai B; Hu H
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31466261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
    Huang W; Xue Y; Wu Y
    PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expert knowledge-infused deep learning for automatic lung nodule detection.
    Tan J; Huo Y; Liang Z; Li L
    J Xray Sci Technol; 2019; 27(1):17-35. PubMed ID: 30452432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung texture classification using locally-oriented Riesz components.
    Depeursinge A; Foncubierta-Rodriguez A; Van de Ville D; Müller H
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):231-8. PubMed ID: 22003704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.
    Zhang C; Sun X; Dang K; Li K; Guo XW; Chang J; Yu ZQ; Huang FY; Wu YS; Liang Z; Liu ZY; Zhang XG; Gao XL; Huang SH; Qin J; Feng WN; Zhou T; Zhang YB; Fang WJ; Zhao MF; Yang XN; Zhou Q; Wu YL; Zhong WZ
    Oncologist; 2019 Sep; 24(9):1159-1165. PubMed ID: 30996009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation.
    Liu KL; Wu T; Chen PT; Tsai YM; Roth H; Wu MS; Liao WC; Wang W
    Lancet Digit Health; 2020 Jun; 2(6):e303-e313. PubMed ID: 33328124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Interstitial Lung Abnormality Patterns with an Ensemble of Deep Convolutional Neural Networks.
    Bermejo-Peláez D; Ash SY; Washko GR; San José Estépar R; Ledesma-Carbayo MJ
    Sci Rep; 2020 Jan; 10(1):338. PubMed ID: 31941918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of CT brain images based on deep learning networks.
    Gao XW; Hui R; Tian Z
    Comput Methods Programs Biomed; 2017 Jan; 138():49-56. PubMed ID: 27886714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network.
    Anthimopoulos M; Christodoulidis S; Ebner L; Christe A; Mougiakakou S
    IEEE Trans Med Imaging; 2016 May; 35(5):1207-1216. PubMed ID: 26955021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local rotation invariance in 3D CNNs.
    Andrearczyk V; Fageot J; Oreiller V; Montet X; Depeursinge A
    Med Image Anal; 2020 Oct; 65():101756. PubMed ID: 32623274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep convolutional neural network architecture for interstitial lung disease pattern classification.
    Huang S; Lee F; Miao R; Si Q; Lu C; Chen Q
    Med Biol Eng Comput; 2020 Apr; 58(4):725-737. PubMed ID: 31965407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses.
    Choe J; Lee SM; Do KH; Lee G; Lee JG; Lee SM; Seo JB
    Radiology; 2019 Aug; 292(2):365-373. PubMed ID: 31210613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of physics-based data augmentation on the generalizability of deep neural networks: Demonstration on nodule false-positive reduction.
    Omigbodun AO; Noo F; McNitt-Gray M; Hsu W; Hsieh SS
    Med Phys; 2019 Oct; 46(10):4563-4574. PubMed ID: 31396974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explaining Deep Features Using Radiologist-Defined Semantic Features and Traditional Quantitative Features.
    Paul R; Schabath M; Balagurunathan Y; Liu Y; Li Q; Gillies R; Hall LO; Goldgof DB
    Tomography; 2019 Mar; 5(1):192-200. PubMed ID: 30854457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning for screening of interstitial lung disease patterns in high-resolution CT images.
    Agarwala S; Kale M; Kumar D; Swaroop R; Kumar A; Kumar Dhara A; Basu Thakur S; Sadhu A; Nandi D
    Clin Radiol; 2020 Jun; 75(6):481.e1-481.e8. PubMed ID: 32075744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.