These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31229864)

  • 1. Impact of network heterogeneity on electrokinetic transport in porous media.
    Alizadeh S; Bazant MZ; Mani A
    J Colloid Interface Sci; 2019 Oct; 553():451-464. PubMed ID: 31229864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Model for Electrokinetic Transport in Networks of Pores, Part I: Model Derivation.
    Alizadeh S; Mani A
    Langmuir; 2017 Jun; 33(25):6205-6219. PubMed ID: 28498669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Model for Electrokinetic Transport in Networks of Pores, Part II: Computational Algorithms and Applications.
    Alizadeh S; Mani A
    Langmuir; 2017 Jun; 33(25):6220-6231. PubMed ID: 28509560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore network model of electrokinetic transport through charged porous media.
    Obliger A; Jardat M; Coelho D; Bekri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043013. PubMed ID: 24827338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous pressure and electro-osmosis driven flow in charged porous media: Pore-scale effects on mixing and dispersion.
    Godinez-Brizuela OE; Niasar VJ
    J Colloid Interface Sci; 2020 Mar; 561():162-172. PubMed ID: 31812862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of shock electrodialysis I: Water dissociation and electrosmotic vortices.
    Tian H; Alkhadra MA; Bazant MZ
    J Colloid Interface Sci; 2021 May; 589():605-615. PubMed ID: 33549326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deionization shocks in microstructures.
    Mani A; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061504. PubMed ID: 22304094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overlimiting current and shock electrodialysis in porous media.
    Deng D; Dydek EV; Han JH; Schlumpberger S; Mani A; Zaltzman B; Bazant MZ
    Langmuir; 2013 Dec; 29(52):16167-77. PubMed ID: 24320737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations.
    Obliger A; Duvail M; Jardat M; Coelho D; Békri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013019. PubMed ID: 23944561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic Delivery of Reactants: Pore Water Chemistry Controls Transport, Mixing, and Degradation.
    Sprocati R; Gallo A; Sethi R; Rolle M
    Environ Sci Technol; 2021 Jan; 55(1):719-729. PubMed ID: 33295762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-osmotic flow in disordered porous and fractured media.
    Hamzehpour H; Atakhani A; Gupta AK; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033007. PubMed ID: 24730937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desalination Performance Assessment of Scalable, Multi-Stack Ready Shock Electrodialysis Unit Utilizing Anion-Exchange Membranes.
    Čížek J; Cvejn P; Marek J; Tvrzník D
    Membranes (Basel); 2020 Nov; 10(11):. PubMed ID: 33212775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overlimiting current in a microchannel.
    Dydek EV; Zaltzman B; Rubinstein I; Deng DS; Mani A; Bazant MZ
    Phys Rev Lett; 2011 Sep; 107(11):118301. PubMed ID: 22026706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of shock electrodialysis II: Mechanisms of selective ion removal.
    Tian H; Alkhadra MA; Bazant MZ
    J Colloid Interface Sci; 2021 May; 589():616-621. PubMed ID: 33358689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the interplay between electromigration and electroosmosis during electrokinetic transport in heterogeneous porous media.
    Sprocati R; Rolle M
    Water Res; 2022 Apr; 213():118161. PubMed ID: 35152137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres.
    Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eigenvector centrality for geometric and topological characterization of porous media.
    Jimenez-Martinez J; Negre CFA
    Phys Rev E; 2017 Jul; 96(1-1):013310. PubMed ID: 29347210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels.
    Nam S; Cho I; Heo J; Lim G; Bazant MZ; Moon DJ; Sung GY; Kim SJ
    Phys Rev Lett; 2015 Mar; 114(11):114501. PubMed ID: 25839275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of electrolyte transport through charged nanopores.
    Peters PB; van Roij R; Bazant MZ; Biesheuvel PM
    Phys Rev E; 2016 May; 93(5):053108. PubMed ID: 27300979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single layer porous media with entrapped minerals for microscale studies of multiphase flow.
    Liefferink RW; Naillon A; Bonn D; Prat M; Shahidzadeh N
    Lab Chip; 2018 Mar; 18(7):1094-1104. PubMed ID: 29504009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.