BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31230154)

  • 21. Diverse Early Life-History Strategies in Migratory Amazonian Catfish: Implications for Conservation and Management.
    Hegg JC; Giarrizzo T; Kennedy BP
    PLoS One; 2015; 10(7):e0129697. PubMed ID: 26153984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential growth in estuarine and freshwater habitats indicated by plasma IGF1 concentrations and otolith chemistry in Dolly Varden Salvelinus malma.
    Bond MH; Beckman BR; Rohrbach L; Quinn TP
    J Fish Biol; 2014 Nov; 85(5):1429-45. PubMed ID: 25131145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variation in habitat use along the freshwater-marine continuum by grey mullet Mugil cephalus at the southern limits of its distribution.
    Górski K; De Gruijter C; Tana R
    J Fish Biol; 2015 Oct; 87(4):1059-71. PubMed ID: 26377071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Migratory flexibility in native Hawai'ian amphidromous fishes.
    Heim-Ballew H; Moody KN; Blum MJ; McIntyre PB; Hogan JD
    J Fish Biol; 2020 Feb; 96(2):456-468. PubMed ID: 31814124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The legacy of dispersal: larval experience shapes persistence later in the life of a reef fish.
    Shima JS; Swearer SE
    J Anim Ecol; 2010 Nov; 79(6):1308-14. PubMed ID: 20636344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictors of pesticide concentrations in freshwater trout - The role of life history.
    Scholes RC; Hageman KJ; Closs GP; Stirling CH; Reid MR; Gabrielsson R; Augspurger JM
    Environ Pollut; 2016 Dec; 219():253-261. PubMed ID: 27814542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Movements of diadromous fish in large unregulated tropical rivers inferred from geochemical tracers.
    Walther BD; Dempster T; Letnic M; McCulloch MT
    PLoS One; 2011 Apr; 6(4):e18351. PubMed ID: 21494693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A moving target--incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations.
    Cooke SJ; Martins EG; Struthers DP; Gutowsky LF; Power M; Doka SE; Dettmers JM; Crook DA; Lucas MC; Holbrook CM; Krueger CC
    Environ Monit Assess; 2016 Apr; 188(4):239. PubMed ID: 27004432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consequences of variable larval dispersal pathways and resulting phenotypic mixtures to the dynamics of marine metapopulations.
    Shima JS; Noonburg EG; Swearer SE
    Biol Lett; 2015 Feb; 11(2):20140778. PubMed ID: 25673001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Species dispersal along rivers and streams may have variable importance to metapopulation structure.
    Chiu MC; Ao S; Resh VH; He F; Cai Q
    Sci Total Environ; 2021 Mar; 760():144045. PubMed ID: 33341625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence and population consequences of shared larval dispersal histories in a marine fish.
    Shima JS; Swearer SE
    Ecology; 2016 Jan; 97(1):25-31. PubMed ID: 27008771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Juvenile downstream migration patterns of an anadromous fish, allis shad (Alosa alosa), before and after the population collapse in the Gironde system, France.
    Boussinet E; Nachón DJ; Sottolichio A; Lochet A; Stoll S; Bareille G; Tabouret H; Pécheyran C; Acolas ML; Daverat F
    J Fish Biol; 2024 Apr; 104(4):1054-1066. PubMed ID: 38168734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All in the ears: unlocking the early life history biology and spatial ecology of fishes.
    Starrs D; Ebner BC; Fulton CJ
    Biol Rev Camb Philos Soc; 2016 Feb; 91(1):86-105. PubMed ID: 25424431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. What otolith microchemistry and stable isotope analysis reveal and conceal about anguillid eel movements across salinity boundaries.
    Clément M; Chiasson AG; Veinott G; Cairns DK
    Oecologia; 2014 Aug; 175(4):1143-53. PubMed ID: 24889970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature reduces fish dispersal as larvae grow faster to their settlement size.
    Raventos N; Torrado H; Arthur R; Alcoverro T; Macpherson E
    J Anim Ecol; 2021 Jun; 90(6):1419-1432. PubMed ID: 33508875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Of travertine and time: otolith chemistry and microstructure detect provenance and demography of endangered humpback chub in Grand Canyon, USA.
    Limburg KE; Hayden TA; Pine WE; Yard MD; Kozdon R; Valley JW
    PLoS One; 2013; 8(12):e84235. PubMed ID: 24358346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish.
    Fowler AM; Macreadie PI; Bishop DP; Booth DJ
    Mar Environ Res; 2015 May; 106():103-13. PubMed ID: 25800861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polychlorinated biphenyls and organochlorine pesticides as intrinsic tracer tags of foraging grounds of bluefin tuna in the northwest Atlantic Ocean.
    Deshpande AD; Dickhut RM; Dockum BW; Brill RW; Farrington C
    Mar Pollut Bull; 2016 Apr; 105(1):265-76. PubMed ID: 26895594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design.
    Baco AR; Etter RJ; Ribeiro PA; von der Heyden S; Beerli P; Kinlan BP
    Mol Ecol; 2016 Jul; 25(14):3276-98. PubMed ID: 27146215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of otolith chemistry to characterize diadromous migrations.
    Walther BD; Limburg KE
    J Fish Biol; 2012 Jul; 81(2):796-825. PubMed ID: 22803736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.