These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 31230240)

  • 1. Recovery of heavy metals from waste printed circuit boards: statistical optimization of leaching and residue characterization.
    Khayyam Nekouei R; Pahlevani F; Golmohammadzadeh R; Assefi M; Rajarao R; Chen YH; Sahajwalla V
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24417-24429. PubMed ID: 31230240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urban mining of obsolete computers by manual dismantling and waste printed circuit boards by chemical leaching and toxicity assessment of its waste residues.
    Arya S; Patel A; Kumar S; Pau-Loke S
    Environ Pollut; 2021 Aug; 283():117033. PubMed ID: 33887669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids.
    Chen M; Huang J; Ogunseitan OA; Zhu N; Wang YM
    Waste Manag; 2015 Jul; 41():142-7. PubMed ID: 25869844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
    Wang C; Sun R; Xing B
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1483-1491. PubMed ID: 33433266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on the gentle hydrometallurgical treatment of WPCBs: Sustainable and selective gradient process for multiple valuable metals recovery.
    Li XG; Gao Q; Jiang SQ; Nie CC; Zhu XN; Jiao TT
    J Environ Manage; 2023 Dec; 348():119288. PubMed ID: 37864943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanide consumption minimisation and concomitant toxic effluent minimisation during precious metals extraction from waste printed circuit boards.
    Li H; Oraby E; Eksteen J
    Waste Manag; 2021 Apr; 125():87-97. PubMed ID: 33684667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2015 Jul; 41():134-41. PubMed ID: 25802060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method.
    Wang L; Li Q; Li Y; Sun X; Li J; Shen J; Han W; Wang L
    Waste Manag; 2018 Jan; 71():411-419. PubMed ID: 29030122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid.
    Huang J; Chen M; Chen H; Chen S; Sun Q
    Waste Manag; 2014 Feb; 34(2):483-8. PubMed ID: 24246577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of leaching copper by organic agents from waste printed circuit boards in a sulfuric acid solution.
    He J; Zhang M; Chen H; Guo S; Zhu L; Xu J; Zhou K
    Chemosphere; 2022 Nov; 307(Pt 4):135924. PubMed ID: 35934095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple and near-zero-waste processing for recycling gold at a high purity level from waste printed circuit boards.
    Neto IFF; Soares HMVM
    Waste Manag; 2021 Nov; 135():90-97. PubMed ID: 34478952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separating and recycling metal mixture of pyrolyzed waste printed circuit boards by a combined method.
    Chen B; He J; Sun X; Zhao J; Jiang H; Zhang L
    Waste Manag; 2020 Apr; 107():113-120. PubMed ID: 32278216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges.
    Awasthi AK; Zeng X; Li J
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21141-21156. PubMed ID: 27678000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved leaching of Cu, Sn, Pb, Zn, and Al from waste printed circuit boards by electro-generated Cl
    Zhao J; Liu Z; He C; Yang Y; Li J; Fujita T; Wang G; Shen F
    Waste Manag; 2022 Nov; 153():386-396. PubMed ID: 36198214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorefining and electrodeposition for metal separation and purification from polymetallic concentrates after waste printed circuit board smelting.
    Xia Q; Song Q; Xu Z
    Waste Manag; 2023 Mar; 158():146-152. PubMed ID: 36709680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation.
    Fogarasi S; Imre-Lucaci F; Imre-Lucaci A; Ilea P
    J Hazard Mater; 2014 May; 273():215-21. PubMed ID: 24747374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.
    Shah MB; Tipre DR; Dave SR
    Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and Cost-Effective Approach for Copper Recovery from Waste Printed Circuit Boards via a Sequential Mechanochemical/Leaching/Recrystallization Process.
    Liu K; Yang J; Hou H; Liang S; Chen Y; Wang J; Liu B; Xiao K; Hu J; Deng H
    Environ Sci Technol; 2019 Mar; 53(5):2748-2757. PubMed ID: 30698959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper leaching from ultrasonically treated milled waste printed circuit boards: investigation of parameters optimization and kinetics.
    Jha R; Rao MD; Singh KK
    Environ Sci Pollut Res Int; 2024 Aug; 31(39):51401-51414. PubMed ID: 39107645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.