These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

635 related articles for article (PubMed ID: 31230715)

  • 1. Atlas of Subcellular RNA Localization Revealed by APEX-Seq.
    Fazal FM; Han S; Parker KR; Kaewsapsak P; Xu J; Boettiger AN; Chang HY; Ting AY
    Cell; 2019 Jul; 178(2):473-490.e26. PubMed ID: 31230715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules.
    Padrón A; Iwasaki S; Ingolia NT
    Mol Cell; 2019 Aug; 75(4):875-887.e5. PubMed ID: 31442426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells.
    Zhou Y; Wang G; Wang P; Li Z; Yue T; Wang J; Zou P
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11763-11767. PubMed ID: 31240809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An APEX2 proximity ligation method for mapping interactions with the nuclear lamina.
    Tran JR; Paulson DI; Moresco JJ; Adam SA; Yates JR; Goldman RD; Zheng Y
    J Cell Biol; 2021 Jan; 220(1):. PubMed ID: 33306092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting.
    Han S; Zhao BS; Myers SA; Carr SA; He C; Ting AY
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22068-22079. PubMed ID: 32839320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the Composition and Organization of Ribonucleoprotein Complexes by APEX-Seq.
    Padrón A; Ingolia N
    Methods Mol Biol; 2022; 2428():277-289. PubMed ID: 35171486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized APEX2 peroxidase-mediated proximity labeling in fast- and slow-growing mycobacteria.
    Ahamed M; Jaisinghani N; Li M; Winkeler I; Silva S; Previti ML; Seeliger JC
    Methods Enzymol; 2022; 664():267-289. PubMed ID: 35331378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane.
    James C; Müller M; Goldberg MW; Lenz C; Urlaub H; Kehlenbach RH
    J Biol Chem; 2019 Nov; 294(44):16241-16254. PubMed ID: 31519755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications.
    Huang MS; Lin WC; Chang JH; Cheng CH; Wang HY; Mou KY
    Protein Sci; 2019 Sep; 28(9):1703-1712. PubMed ID: 31306516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular proteomics of dopamine neurons in the mouse brain.
    Hobson BD; Choi SJ; Mosharov EV; Soni RK; Sulzer D; Sims PA
    Elife; 2022 Jan; 11():. PubMed ID: 35098924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-independent cargo sorting.
    Del Olmo T; Lauzier A; Normandin C; Larcher R; Lecours M; Jean D; Lessard L; Steinberg F; Boisvert FM; Jean S
    EMBO Rep; 2019 Feb; 20(2):. PubMed ID: 30610016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway.
    Colozza G; Jami-Alahmadi Y; Dsouza A; Tejeda-Muñoz N; Albrecht LV; Sosa EA; Wohlschlegel JA; De Robertis EM
    Sci Rep; 2020 Dec; 10(1):21555. PubMed ID: 33299006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APEX2-based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper-binding Protein that Regulates Autophagy Activation.
    Chen L; Li N; Zhang M; Sun M; Bian J; Yang B; Li Z; Wang J; Li F; Shi X; Wang Y; Yuan F; Zou P; Shan C; Wang J
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25346-25355. PubMed ID: 34550632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling.
    Myers SA; Wright J; Peckner R; Kalish BT; Zhang F; Carr SA
    Nat Methods; 2018 Jun; 15(6):437-439. PubMed ID: 29735997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of Mitochondrial Nucleoids by Transmission Electron Microscopy Using the Transgenic Expression of the Mitochondrial Helicase Twinkle and APEX2.
    Pla-Martín D; Babatz F; Schauss AC
    Methods Mol Biol; 2023; 2615():173-188. PubMed ID: 36807792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophagosome content profiling using proximity biotinylation proteomics coupled to protease digestion in mammalian cells.
    Zellner S; Nalbach K; Behrends C
    STAR Protoc; 2021 Jun; 2(2):100506. PubMed ID: 33997820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APEX2-Mediated Proximity Protein Labeling in Dictyostelium.
    Takashima JA; Woroniecka HA; Charest PG
    Methods Mol Biol; 2024; 2814():119-131. PubMed ID: 38954202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic incorporation of electron-rich ribonucleosides enhances APEX-seq for profiling spatially restricted nascent transcriptome.
    Li R; Zou Z; Wang W; Zou P
    Cell Chem Biol; 2022 Jul; 29(7):1218-1231.e8. PubMed ID: 35245437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized protocol for the identification of lipid droplet proteomes using proximity labeling proteomics in cultured human cells.
    Peterson CWH; Deol KK; To M; Olzmann JA
    STAR Protoc; 2021 Jun; 2(2):100579. PubMed ID: 34151299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular Spatial Transcriptomes: Emerging Frontier for Understanding Gene Regulation.
    Fazal FM; Chang HY
    Cold Spring Harb Symp Quant Biol; 2019; 84():31-45. PubMed ID: 32482897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.