BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31230912)

  • 1. Two Point Method For Robust Shear Wave Phase Velocity Dispersion Estimation of Viscoelastic Materials.
    Kijanka P; Ambrozinski L; Urban MW
    Ultrasound Med Biol; 2019 Sep; 45(9):2540-2553. PubMed ID: 31230912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement.
    Kijanka P; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):483-496. PubMed ID: 31603777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Velocity Estimation With Expanded Bandwidth in Viscoelastic Phantoms and Tissues.
    Kijanka P; Urban MW
    IEEE Trans Med Imaging; 2021 May; 40(5):1352-1362. PubMed ID: 33502973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved two-point frequency shift power method for measurement of shear wave attenuation.
    Kijanka P; Urban MW
    Ultrasonics; 2022 Aug; 124():106735. PubMed ID: 35390627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Phase Velocity Dispersion Estimation of Viscoelastic Materials Used for Medical Applications Based on the Multiple Signal Classification Method.
    Kijanka P; Qiang B; Song P; Amador Carrascal C; Chen S; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):423-439. PubMed ID: 29505409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound Shear Elastography With Expanded Bandwidth (USEWEB): A Novel Method for 2D Shear Phase Velocity Imaging of Soft Tissues.
    Kijanka P; Urban MW
    IEEE Trans Med Imaging; 2024 May; 43(5):1910-1922. PubMed ID: 38198276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Robustness of S-Transform Based Phase Velocity Estimation in Viscoelastic Phantoms and Renal Transplants.
    Kijanka P; Vasconcelos L; Mandrekar J; Urban MW
    IEEE Trans Biomed Eng; 2024 Mar; 71(3):954-966. PubMed ID: 37824308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic parameter estimation using simulated shear wave motion and convolutional neural networks.
    Vasconcelos L; Kijanka P; Urban MW
    Comput Biol Med; 2021 Jun; 133():104382. PubMed ID: 33872971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Local Phase Velocity-Based Imaging: Shear Wave Particle Velocity and Displacement Motion Study.
    Kijanka P; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):526-537. PubMed ID: 31634830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Phase Velocity Based Imaging of Viscoelastic Phantoms and Tissues.
    Kijanka P; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):389-405. PubMed ID: 31976887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion curve calculation in viscoelastic tissue-mimicking materials using non-parametric, parametric, and high-resolution methods.
    Kijanka P; Urban MW
    Ultrasonics; 2021 Jan; 109():106257. PubMed ID: 32980784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound Shear Wave Propagation Modeling in General Tissue-Like Viscoelastic Materials.
    Osika M; Kijanka P
    Ultrasound Med Biol; 2024 Apr; 50(4):627-638. PubMed ID: 38290911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
    Urban MW; Chen S; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):748-58. PubMed ID: 19406703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics.
    van Sloun RJG; Wildeboer RR; Wijkstra H; Mischi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1666-1673. PubMed ID: 28841556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local Phase Velocity Based Imaging: A New Technique Used for Ultrasound Shear Wave Elastography.
    Kijanka P; Urban MW
    IEEE Trans Med Imaging; 2019 Apr; 38(4):894-908. PubMed ID: 30296217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.
    Chatelin S; Gennisson JL; Bernal M; Tanter M; Pernot M
    Phys Med Biol; 2015 May; 60(9):3639-54. PubMed ID: 25880794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
    Shih CC; Qian X; Ma T; Han Z; Huang CC; Zhou Q; Shung KK
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1887-1898. PubMed ID: 29993652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.