These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31231403)

  • 1. A High-Throughput Model-Assisted Method for Phenotyping Maize Green Leaf Area Index Dynamics Using Unmanned Aerial Vehicle Imagery.
    Blancon J; Dutartre D; Tixier MH; Weiss M; Comar A; Praud S; Baret F
    Front Plant Sci; 2019; 10():685. PubMed ID: 31231403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize green leaf area index dynamics: genetic basis of a new secondary trait for grain yield in optimal and drought conditions.
    Blancon J; Buet C; Dubreuil P; Tixier MH; Baret F; Praud S
    Theor Appl Genet; 2024 Mar; 137(3):68. PubMed ID: 38441678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features.
    Sun X; Yang Z; Su P; Wei K; Wang Z; Yang C; Wang C; Qin M; Xiao L; Yang W; Zhang M; Song X; Feng M
    Front Plant Sci; 2023; 14():1158837. PubMed ID: 37063231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach.
    Han L; Yang G; Yang H; Xu B; Li Z; Yang X
    Front Plant Sci; 2018; 9():1638. PubMed ID: 30483291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy.
    Chakhvashvili E; Siegmann B; Muller O; Verrelst J; Bendig J; Kraska T; Rascher U
    Remote Sens (Basel); 2022 Mar; 14(5):1247. PubMed ID: 36082321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques.
    Buchaillot ML; Gracia-Romero A; Vergara-Diaz O; Zaman-Allah MA; Tarekegne A; Cairns JE; Prasanna BM; Araus JL; Kefauver SC
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment.
    Pipatsitee P; Tisarum R; Taota K; Samphumphuang T; Eiumnoh A; Singh HP; Cha-Um S
    Environ Monit Assess; 2022 Nov; 195(1):128. PubMed ID: 36402920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines.
    Potgieter AB; George-Jaeggli B; Chapman SC; Laws K; Suárez Cadavid LA; Wixted J; Watson J; Eldridge M; Jordan DR; Hammer GL
    Front Plant Sci; 2017; 8():1532. PubMed ID: 28951735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress.
    Jiang Z; Tu H; Bai B; Yang C; Zhao B; Guo Z; Liu Q; Zhao H; Yang W; Xiong L; Zhang J
    New Phytol; 2021 Oct; 232(1):440-455. PubMed ID: 34165797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles.
    Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H
    J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic dissection of seasonal vegetation index dynamics in maize through aerial based high-throughput phenotyping.
    Wang J; Li X; Guo T; Dzievit MJ; Yu X; Liu P; Price KP; Yu J
    Plant Genome; 2021 Nov; 14(3):e20155. PubMed ID: 34596348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.
    Ludovisi R; Tauro F; Salvati R; Khoury S; Mugnozza Scarascia G; Harfouche A
    Front Plant Sci; 2017; 8():1681. PubMed ID: 29021803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV).
    Wang X; Zhang R; Song W; Han L; Liu X; Sun X; Luo M; Chen K; Zhang Y; Yang H; Yang G; Zhao Y; Zhao J
    Sci Rep; 2019 Mar; 9(1):3458. PubMed ID: 30837510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits.
    Shu M; Fei S; Zhang B; Yang X; Guo Y; Li B; Ma Y
    Plant Phenomics; 2022; 2022():9802585. PubMed ID: 36158531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.
    Madec S; Baret F; de Solan B; Thomas S; Dutartre D; Jezequel S; Hemmerlé M; Colombeau G; Comar A
    Front Plant Sci; 2017; 8():2002. PubMed ID: 29230229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV.
    Li F; Piasecki C; Millwood RJ; Wolfe B; Mazarei M; Stewart CN
    Front Plant Sci; 2020; 11():574073. PubMed ID: 33193511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of the Two-Source Energy Balance (TSEB) Model as a Tool for Monitoring the Response of Durum Wheat to Drought by High-Throughput Field Phenotyping.
    Gómez-Candón D; Bellvert J; Royo C
    Front Plant Sci; 2021; 12():658357. PubMed ID: 33936143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region.
    Sapkota S; Paudyal DR
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.