These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31231403)

  • 21. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives.
    Yang G; Liu J; Zhao C; Li Z; Huang Y; Yu H; Xu B; Yang X; Zhu D; Zhang X; Zhang R; Feng H; Zhao X; Li Z; Li H; Yang H
    Front Plant Sci; 2017; 8():1111. PubMed ID: 28713402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scoring Cercospora Leaf Spot on Sugar Beet: Comparison of UGV and UAV Phenotyping Systems.
    Jay S; Comar A; Benicio R; Beauvois J; Dutartre D; Daubige G; Li W; Labrosse J; Thomas S; Henry N; Weiss M; Baret F
    Plant Phenomics; 2020; 2020():9452123. PubMed ID: 33313567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms.
    Liu S; Jin X; Nie C; Wang S; Yu X; Cheng M; Shao M; Wang Z; Tuohuti N; Bai Y; Liu Y
    Plant Physiol; 2021 Nov; 187(3):1551-1576. PubMed ID: 34618054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation.
    Volpato L; Pinto F; González-Pérez L; Thompson IG; Borém A; Reynolds M; Gérard B; Molero G; Rodrigues FA
    Front Plant Sci; 2021; 12():591587. PubMed ID: 33664755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining self-organizing maps and biplot analysis to preselect maize phenotypic components based on UAV high-throughput phenotyping platform.
    Han L; Yang G; Dai H; Yang H; Xu B; Li H; Long H; Li Z; Yang X; Zhao C
    Plant Methods; 2019; 15():57. PubMed ID: 31149023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging.
    Makanza R; Zaman-Allah M; Cairns JE; Magorokosho C; Tarekegne A; Olsen M; Prasanna BM
    Remote Sens (Basel); 2018 Feb; 10(2):330. PubMed ID: 33489316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic Prediction of Green Fraction Dynamics in Soybean Using Unmanned Aerial Vehicles Observations.
    Toda Y; Sasaki G; Ohmori Y; Yamasaki Y; Takahashi H; Takanashi H; Tsuda M; Kajiya-Kanegae H; Lopez-Lozano R; Tsujimoto H; Kaga A; Nakazono M; Fujiwara T; Baret F; Iwata H
    Front Plant Sci; 2022; 13():828864. PubMed ID: 35371133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Water and Nitrogen Use Efficiencies Through UAV-Based Multispectral Phenotyping in Winter Wheat.
    Yang M; Hassan MA; Xu K; Zheng C; Rasheed A; Zhang Y; Jin X; Xia X; Xiao Y; He Z
    Front Plant Sci; 2020; 11():927. PubMed ID: 32676089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.
    Hassan MA; Yang M; Rasheed A; Yang G; Reynolds M; Xia X; Xiao Y; He Z
    Plant Sci; 2019 May; 282():95-103. PubMed ID: 31003615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis and Evaluation of the Image Preprocessing Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter Wheat Monitoring.
    Jiang J; Zheng H; Ji X; Cheng T; Tian Y; Zhu Y; Cao W; Ehsani R; Yao X
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30759869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography.
    Che Y; Wang Q; Xie Z; Zhou L; Li S; Hui F; Wang X; Li B; Ma Y
    Ann Bot; 2020 Sep; 126(4):765-773. PubMed ID: 32432702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding.
    Tattaris M; Reynolds MP; Chapman SC
    Front Plant Sci; 2016; 7():1131. PubMed ID: 27536304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery.
    Wu S; Deng L; Guo L; Wu Y
    Plant Methods; 2022 May; 18(1):68. PubMed ID: 35590377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal modeling of high-throughput multispectral aerial images improves agronomic trait genomic prediction in hybrid maize.
    Morales N; Anche MT; Kaczmar NS; Lepak N; Ni P; Romay MC; Santantonio N; Buckler ES; Gore MA; Mueller LA; Robbins KR
    Genetics; 2024 May; 227(1):. PubMed ID: 38469622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling.
    Watanabe K; Guo W; Arai K; Takanashi H; Kajiya-Kanegae H; Kobayashi M; Yano K; Tokunaga T; Fujiwara T; Tsutsumi N; Iwata H
    Front Plant Sci; 2017; 8():421. PubMed ID: 28400784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring.
    Zhang L; Niu Y; Zhang H; Han W; Li G; Tang J; Peng X
    Front Plant Sci; 2019; 10():1270. PubMed ID: 31649715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage.
    Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model.
    Cheng Z; Meng J; Shang J; Liu J; Huang J; Qiao Y; Qian B; Jing Q; Dong T; Yu L
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Haplotype analysis from unmanned aerial vehicle imagery of rice MAGIC population for the trait dissection of biomass and plant architecture.
    Ogawa D; Sakamoto T; Tsunematsu H; Kanno N; Nonoue Y; Yonemaru JI
    J Exp Bot; 2021 Mar; 72(7):2371-2382. PubMed ID: 33367626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.