These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31231630)

  • 1. Improved Conditions for the Visible-Light Driven Hydrocarboxylation by Rh(I) and Photoredox Dual Catalysts Based on the Mechanistic Analyses.
    Murata K; Numasawa N; Shimomaki K; Takaya J; Iwasawa N
    Front Chem; 2019; 7():371. PubMed ID: 31231630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a visible light-driven hydrocarboxylation cycle of alkenes by the combined use of Rh(i) and photoredox catalysts.
    Murata K; Numasawa N; Shimomaki K; Takaya J; Iwasawa N
    Chem Commun (Camb); 2017 Mar; 53(21):3098-3101. PubMed ID: 28243662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rh(III)(dmbpy)2Cl2]+ as a highly efficient catalyst for visible-light-driven hydrogen production in pure water: comparison with other rhodium catalysts.
    Stoll T; Gennari M; Serrano I; Fortage J; Chauvin J; Odobel F; Rebarz M; Poizat O; Sliwa M; Deronzier A; Collomb MN
    Chemistry; 2013 Jan; 19(2):782-92. PubMed ID: 23169449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ir(III) Complex Photosensitizer With Strong Visible Light Absorption for Photocatalytic CO
    Kuramochi Y; Ishitani O
    Front Chem; 2019; 7():259. PubMed ID: 31119121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
    Mills IN; Porras JA; Bernhard S
    Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected effect of catalyst concentration on photochemical CO
    Kuramochi Y; Itabashi J; Fukaya K; Enomoto A; Yoshida M; Ishida H
    Chem Sci; 2015 May; 6(5):3063-3074. PubMed ID: 28706681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational mechanistic investigation of hydrogen production in water using the [Rh(III)(dmbpy)2Cl2](+)/[Ru(II)(bpy)3](2+)/ascorbic acid photocatalytic system.
    Kayanuma M; Stoll T; Daniel C; Odobel F; Fortage J; Deronzier A; Collomb MN
    Phys Chem Chem Phys; 2015 Apr; 17(16):10497-509. PubMed ID: 25804803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Visible-Light-Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst.
    Zhang J; She P; Xu Q; Tian F; Rao H; Qin JS; Bonin J; Robert M
    ChemSusChem; 2024 Jun; 17(12):e202301892. PubMed ID: 38324459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function-Integrated Ru Catalyst for Photochemical CO
    Lee SK; Kondo M; Okamura M; Enomoto T; Nakamura G; Masaoka S
    J Am Chem Soc; 2018 Dec; 140(49):16899-16903. PubMed ID: 30472827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry.
    Ma J; Zhang X; Huang X; Luo S; Meggers E
    Nat Protoc; 2018 Apr; 13(4):605-632. PubMed ID: 29494576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling light-driven water oxidation via a low-energy RuIV=O intermediate.
    Lewandowska-Andralojc A; Polyansky DE; Zong R; Thummel RP; Fujita E
    Phys Chem Chem Phys; 2013 Sep; 15(33):14058-68. PubMed ID: 23860663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible-light driven H₂ production utilizing iridium and rhodium complexes intercalated into a zirconium phosphate layered matrix.
    Mori K; Aoyama J; Kawashima M; Yamashita H
    Dalton Trans; 2014 Jul; 43(27):10541-7. PubMed ID: 24695787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis.
    Kelly CB; Patel NR; Primer DN; Jouffroy M; Tellis JC; Molander GA
    Nat Protoc; 2017 Mar; 12(3):472-492. PubMed ID: 28151464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of CO2 Activated on Transition Metals and Sulfur Ligands.
    Kobayashi K; Tanaka K
    Inorg Chem; 2015 Jun; 54(11):5085-95. PubMed ID: 25978130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Rhodium Catalyst Superior to Iridium Congeners for Enantioselective Radical Amination Activated by Visible Light.
    Shen X; Harms K; Marsch M; Meggers E
    Chemistry; 2016 Jun; 22(27):9102-5. PubMed ID: 27145893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic Fixation of CO
    Yuan T; Wu Z; Zhai S; Wang R; Wu S; Cheng J; Zheng M; Wang X
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202304861. PubMed ID: 37102784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.