These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31231630)

  • 21. Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H
    Castillo CE; Stoll T; Sandroni M; Gueret R; Fortage J; Kayanuma M; Daniel C; Odobel F; Deronzier A; Collomb MN
    Inorg Chem; 2018 Sep; 57(17):11225-11239. PubMed ID: 30129361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bis-Cyclometalated Indazole Chiral-at-Rhodium Catalyst for Asymmetric Photoredox Cyanoalkylations.
    Steinlandt PS; Zuo W; Harms K; Meggers E
    Chemistry; 2019 Dec; 25(67):15333-15340. PubMed ID: 31541505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoinduced water oxidation by a tetraruthenium polyoxometalate catalyst: ion-pairing and primary processes with Ru(bpy)3(2+) photosensitizer.
    Natali M; Orlandi M; Berardi S; Campagna S; Bonchio M; Sartorel A; Scandola F
    Inorg Chem; 2012 Jul; 51(13):7324-31. PubMed ID: 22686248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visible-Light-Driven Carboxylation of Aryl Halides by the Combined Use of Palladium and Photoredox Catalysts.
    Shimomaki K; Murata K; Martin R; Iwasawa N
    J Am Chem Soc; 2017 Jul; 139(28):9467-9470. PubMed ID: 28657743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-Driven Water Oxidation with the
    Volpe A; Tubaro C; Natali M; Sartorel A; Brudvig GW; Bonchio M
    Inorg Chem; 2019 Dec; 58(24):16537-16545. PubMed ID: 31774669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photocatalytic function of the B
    Tian H; Shimakoshi H; Park G; Kim S; You Y; Hisaeda Y
    Dalton Trans; 2018 Jan; 47(3):675-683. PubMed ID: 29271445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visible-light-driven methane formation from CO
    Rao H; Schmidt LC; Bonin J; Robert M
    Nature; 2017 Aug; 548(7665):74-77. PubMed ID: 28723895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carboxylation of Aryl Triflates with CO
    Bhunia SK; Das P; Nandi S; Jana R
    Org Lett; 2019 Jun; 21(12):4632-4637. PubMed ID: 31188621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic, Enantioselective Addition of Alkyl Radicals to Alkenes via Visible-Light-Activated Photoredox Catalysis with a Chiral Rhodium Complex.
    Huo H; Harms K; Meggers E
    J Am Chem Soc; 2016 Jun; 138(22):6936-9. PubMed ID: 27218134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic details for cobalt catalyzed photochemical hydrogen production in aqueous solution: efficiencies of the photochemical and non-photochemical steps.
    Shan B; Baine T; Ma XA; Zhao X; Schmehl RH
    Inorg Chem; 2013 May; 52(9):4853-9. PubMed ID: 23642176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iridium and rhodium complexes within a macroreticular acidic resin: a heterogeneous photocatalyst for visible-light driven H2 production without an electron mediator.
    Mori K; Kubota Y; Yamashita H
    Chem Asian J; 2013 Dec; 8(12):3207-13. PubMed ID: 24115471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New supramolecular structural motif coupling a ruthenium(II) polyazine light absorber to a rhodium(I) center.
    Zhou R; Sedai B; Manbeck GF; Brewer KJ
    Inorg Chem; 2013 Dec; 52(23):13314-24. PubMed ID: 24245990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic direct hydrocarboxylation of styrenes with CO
    Jin Y; Caner J; Nishikawa S; Toriumi N; Iwasawa N
    Nat Commun; 2022 Dec; 13(1):7584. PubMed ID: 36481654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoredox-Assisted Reductive Cross-Coupling: Mechanistic Insight into Catalytic Aryl-Alkyl Cross-Couplings.
    Paul A; Smith MD; Vannucci AK
    J Org Chem; 2017 Feb; 82(4):1996-2003. PubMed ID: 28112920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight.
    Gueret R; Castillo CE; Rebarz M; Thomas F; Hargrove AA; Pécaut J; Sliwa M; Fortage J; Collomb MN
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):82-94. PubMed ID: 25997378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic hydrogen evolution capability and a theoretically supported reaction mechanism of a paddlewheel-type dirhodium complex.
    Kataoka Y; Yano N; Handa M; Kawamoto T
    Dalton Trans; 2019 Jun; 48(21):7302-7312. PubMed ID: 30801087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru,  Rh,  Ru photoinitiated electron collector.
    Arachchige SM; Shaw R; White TA; Shenoy V; Tsui HM; Brewer KJ
    ChemSusChem; 2011 Apr; 4(4):514-8. PubMed ID: 21438156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Unexpected Iron (II)-Based Homogeneous Catalytic System for Highly Efficient CO
    Fu ZC; Mi C; Sun Y; Yang Z; Xu QQ; Fu WF
    Molecules; 2019 May; 24(10):. PubMed ID: 31100775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes.
    Cline ED; Adamson SE; Bernhard S
    Inorg Chem; 2008 Nov; 47(22):10378-88. PubMed ID: 18939819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.