These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 31231881)
1. Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport. Li M; Kang JS; Nguyen HD; Wu H; Aoki T; Hu Y Adv Mater; 2019 Aug; 31(33):e1901021. PubMed ID: 31231881 [TBL] [Abstract][Full Text] [Related]
2. Nonequilibrium Phonon Thermal Resistance at MoS Zheng W; McClellan CJ; Pop E; Koh YK ACS Appl Mater Interfaces; 2022 May; 14(19):22372-22380. PubMed ID: 35506655 [TBL] [Abstract][Full Text] [Related]
3. Experimental observation of localized interfacial phonon modes. Cheng Z; Li R; Yan X; Jernigan G; Shi J; Liao ME; Hines NJ; Gadre CA; Idrobo JC; Lee E; Hobart KD; Goorsky MS; Pan X; Luo T; Graham S Nat Commun; 2021 Nov; 12(1):6901. PubMed ID: 34824284 [TBL] [Abstract][Full Text] [Related]
4. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications. Kang JS; Wu H; Hu Y Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845 [TBL] [Abstract][Full Text] [Related]
5. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States. Chen N; Yang K; Wang Z; Zhong B; Wang J; Song J; Li Q; Ni J; Sun F; Liu Y; Fan T ACS Appl Mater Interfaces; 2023 Jul; 15(28):34132-34144. PubMed ID: 37405384 [TBL] [Abstract][Full Text] [Related]
6. Ionic Intercalation in Two-Dimensional van der Waals Materials: In Situ Characterization and Electrochemical Control of the Anisotropic Thermal Conductivity of Black Phosphorus. Kang JS; Ke M; Hu Y Nano Lett; 2017 Mar; 17(3):1431-1438. PubMed ID: 28231004 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Lee S; Yang F; Suh J; Yang S; Lee Y; Li G; Sung Choe H; Suslu A; Chen Y; Ko C; Park J; Liu K; Li J; Hippalgaonkar K; Urban JJ; Tongay S; Wu J Nat Commun; 2015 Oct; 6():8573. PubMed ID: 26472285 [TBL] [Abstract][Full Text] [Related]
8. Probing the Physical Origin of Anisotropic Thermal Transport in Black Phosphorus Nanoribbons. Zhao Y; Zhang G; Nai MH; Ding G; Li D; Liu Y; Hippalgaonkar K; Lim CT; Chi D; Li B; Wu J; Thong JTL Adv Mater; 2018 Dec; 30(50):e1804928. PubMed ID: 30307655 [TBL] [Abstract][Full Text] [Related]
9. Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method. Li M; Kang JS; Hu Y Rev Sci Instrum; 2018 Aug; 89(8):084901. PubMed ID: 30184688 [TBL] [Abstract][Full Text] [Related]
10. Investigation of interfacial thermal transport across graphene and an organic semiconductor using molecular dynamics simulations. Wang X; Zhang J; Chen Y; Chan PKL Phys Chem Chem Phys; 2017 Jun; 19(24):15933-15941. PubMed ID: 28590478 [TBL] [Abstract][Full Text] [Related]
11. Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces. Lee E; Zhang T; Yoo T; Guo Z; Luo T ACS Appl Mater Interfaces; 2016 Dec; 8(51):35505-35512. PubMed ID: 27983798 [TBL] [Abstract][Full Text] [Related]
12. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials. Khan S; Angeles F; Wright J; Vishwakarma S; Ortiz VH; Guzman E; Kargar F; Balandin AA; Smith DJ; Jena D; Xing HG; Wilson R ACS Appl Mater Interfaces; 2022 Aug; 14(31):36178-36188. PubMed ID: 35895030 [TBL] [Abstract][Full Text] [Related]
13. Covalent-bonding-induced strong phonon scattering in the atomically thin WSe Choi YG; Jeong DG; Ju HI; Roh CJ; Kim G; Mun BS; Kim TY; Kim SW; Lee JS Sci Rep; 2019 May; 9(1):7612. PubMed ID: 31110268 [TBL] [Abstract][Full Text] [Related]
14. Effect of the Thermal Boundary Resistance in Metal/Dielectric Thermally Conductive Layers on Power Generation of Silicon Nanowire Microthermoelectric Generators. Zhan T; Ma S; Jin Z; Takezawa H; Mesaki K; Tomita M; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T ACS Appl Mater Interfaces; 2020 Jul; 12(30):34441-34450. PubMed ID: 32635712 [TBL] [Abstract][Full Text] [Related]
15. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces. Lee E; Menumerov E; Hughes RA; Neretina S; Luo T ACS Appl Mater Interfaces; 2018 Oct; 10(40):34690-34698. PubMed ID: 30209944 [TBL] [Abstract][Full Text] [Related]
16. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces. Brown DB; Shen W; Li X; Xiao K; Geohegan DB; Kumar S ACS Appl Mater Interfaces; 2019 Apr; 11(15):14418-14426. PubMed ID: 30896146 [TBL] [Abstract][Full Text] [Related]
17. Quasi-Ballistic Thermal Transport Across MoS Sood A; Xiong F; Chen S; Cheaito R; Lian F; Asheghi M; Cui Y; Donadio D; Goodson KE; Pop E Nano Lett; 2019 Apr; 19(4):2434-2442. PubMed ID: 30808167 [TBL] [Abstract][Full Text] [Related]
18. Ga Song Y; Shoemaker D; Leach JH; McGray C; Huang HL; Bhattacharyya A; Zhang Y; Gonzalez-Valle CU; Hess T; Zhukovsky S; Ferri K; Lavelle RM; Perez C; Snyder DW; Maria JP; Ramos-Alvarado B; Wang X; Krishnamoorthy S; Hwang J; Foley BM; Choi S ACS Appl Mater Interfaces; 2021 Sep; 13(34):40817-40829. PubMed ID: 34470105 [TBL] [Abstract][Full Text] [Related]
19. Thermal Transport across Metal/β-Ga Shi J; Yuan C; Huang HL; Johnson J; Chae C; Wang S; Hanus R; Kim S; Cheng Z; Hwang J; Graham S ACS Appl Mater Interfaces; 2021 Jun; 13(24):29083-29091. PubMed ID: 34109790 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of interfacial thermal conductance between metal and semiconductor. Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]