These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 31232178)
1. The consequences of adopting therapeutic luminophore azapodophyllotoxin into BSA: a molecular regulator to control emissive population of two tryptophan residues in carrier protein. Mukherjee S; Ganorkar K; Gupta S; Kumar A; Singh A; Ghosh SK J Biomol Struct Dyn; 2020 May; 38(8):2338-2351. PubMed ID: 31232178 [TBL] [Abstract][Full Text] [Related]
2. Switching of Trp-214 intrinsic rotamer population in human serum albumin: An insight into the aftermath of embracing therapeutic bioorganic luminophore azapodophyllotoxin into sudlow site I. Mukherjee S; Ganorkar K; Kumar A; Sehra N; Ghosh SK Bioorg Chem; 2019 Mar; 84():63-75. PubMed ID: 30481647 [TBL] [Abstract][Full Text] [Related]
3. Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: A combined spectroscopic and docking simulation approach. Joshi R; Jadhao M; Kumar H; Ghosh SK Bioorg Chem; 2017 Dec; 75():332-346. PubMed ID: 29096094 [TBL] [Abstract][Full Text] [Related]
4. Entrapment in micellar assemblies switches the excimer population of potential therapeutic luminophore azapodophyllotoxin. Mukherjee S; Gupta S; Ganorkar K; Kumar A; Ghosh SK Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117723. PubMed ID: 31748162 [TBL] [Abstract][Full Text] [Related]
5. Stabilization of a potential anticancer thiosemicarbazone derivative in Sudlow site I of human serum albumin: In vitro spectroscopy coupled with molecular dynamics simulation. Ganorkar K; Mukherjee S; Singh P; Ghosh SK Biophys Chem; 2021 Feb; 269():106509. PubMed ID: 33302053 [TBL] [Abstract][Full Text] [Related]
6. Effect of triazole-tryptophan hybrid on the conformation stability of bovine serum albumin. Aneja B; Kumari M; Azam A; Kumar A; Abid M; Patel R Luminescence; 2018 May; 33(3):464-474. PubMed ID: 29314579 [TBL] [Abstract][Full Text] [Related]
7. Interaction of piroxicam with bovine serum albumin investigated by spectroscopic, calorimetric and computational molecular methods. Aricov L; Angelescu DG; Băran A; Leontieş AR; Popa VT; Precupaş A; Sandu R; Stîngă G; Anghel DF J Biomol Struct Dyn; 2020 Jun; 38(9):2659-2671. PubMed ID: 31315508 [TBL] [Abstract][Full Text] [Related]
8. Investigating the mechanism of binding of nalidixic acid with deoxyribonucleic acid and serum albumin: a biophysical and molecular docking approaches. Siddiqui S; Mujeeb A; Ameen F; Ishqi HM; Rehman SU; Tabish M J Biomol Struct Dyn; 2021 Feb; 39(2):570-585. PubMed ID: 31910794 [TBL] [Abstract][Full Text] [Related]
9. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu Yousuf I; Bashir M; Arjmand F; Tabassum S J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic and molecular docking studies on interaction of two Schiff base complexes with bovine serum albumin. Dezhampanah H; Esmaili M; Jampour S J Biomol Struct Dyn; 2020 Jun; 38(9):2650-2658. PubMed ID: 31269866 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic identification of interactions of Pb2+ with bovine serum albumin. Liu Y; Zhang L; Liu R; Zhang P J Fluoresc; 2012 Jan; 22(1):239-45. PubMed ID: 21874288 [TBL] [Abstract][Full Text] [Related]
12. Phenytoin-Bovine Serum Albumin interactions - modeling plasma protein - drug binding: A multi-spectroscopy and in silico-based correlation. Suresh PK; Divya N; Nidhi S; Rajasekaran R Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():523-527. PubMed ID: 29304487 [TBL] [Abstract][Full Text] [Related]
13. Sensing of hydrophobic cavity of serum albumin by an adenosine analogue: fluorescence correlation and ensemble spectroscopic studies. Nag M; Bera K; Chakraborty S; Basak S J Photochem Photobiol B; 2013 Oct; 127():202-11. PubMed ID: 24061159 [TBL] [Abstract][Full Text] [Related]
14. The effect of putrescine on stability and structural properties of bovine serum albumin. Ziaee E; Shareghi B; Farhadian S; Momeni L; Heibati-Goojani F J Biomol Struct Dyn; 2021 Jan; 39(1):254-262. PubMed ID: 31997719 [TBL] [Abstract][Full Text] [Related]
15. Characterizing the interactions of the antipsychotic drug trifluoperazine with bovine serum albumin: Probing the drug-protein and drug-drug interactions using multi-spectroscopic approaches. Raghav D; Mahanty S; Rathinasamy K Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117584. PubMed ID: 31698317 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the binding sites and orientation of Norfloxacin on bovine serum albumin by surface enhanced Raman scattering and molecular docking. Lian W; Liu Y; Yang H; Ma H; Su R; Han X; Zhao B; Niu L Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 207():307-312. PubMed ID: 30265946 [TBL] [Abstract][Full Text] [Related]
17. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization. Giménez RE; Vargová V; Rey V; Turbay MB; Abatedaga I; Morán Vieyra FE; Paz Zanini VI; Mecchia Ortiz JH; Katz NE; Ostatná V; Borsarelli CD Free Radic Biol Med; 2016 May; 94():99-109. PubMed ID: 26898504 [TBL] [Abstract][Full Text] [Related]
18. Impacts of hydrophobicity and ionicity of phendione-based cobalt(II)/(III) complexes on binding with bovine serum albumin. Nehru S; Anitha Priya JA; Hariharan S; Vijay Solomon R; Veeralakshmi S J Biomol Struct Dyn; 2020 Apr; 38(7):2057-2067. PubMed ID: 31146641 [TBL] [Abstract][Full Text] [Related]
19. Interaction of pirenzepine with bovine serum albumin and effect of β-cyclodextrin on binding: A biophysical and molecular docking approach. Rahman Y; Afrin S; Tabish M Arch Biochem Biophys; 2018 Aug; 652():27-37. PubMed ID: 29908138 [TBL] [Abstract][Full Text] [Related]
20. Exploring the binding of two potent anticancer drugs bosutinib and imatinib mesylate with bovine serum albumin: spectroscopic and molecular dynamic simulation studies. Pawar SK; Naik RS; Seetharamappa J Anal Bioanal Chem; 2017 Nov; 409(27):6325-6335. PubMed ID: 28852787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]