BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 31232687)

  • 21. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.
    Gutiérrez G; Millán-Zambrano G; Medina DA; Jordán-Pla A; Pérez-Ortín JE; Peñate X; Chávez S
    Epigenetics Chromatin; 2017 Dec; 10(1):58. PubMed ID: 29212533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Profiling Nucleosome Occupancy by MNase-seq: Experimental Protocol and Computational Analysis.
    Pajoro A; Muiño JM; Angenent GC; Kaufmann K
    Methods Mol Biol; 2018; 1675():167-181. PubMed ID: 29052192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lamin ChIP from Chromatin Prepared by Micrococcal Nuclease Digestion.
    Duband-Goulet I
    Methods Mol Biol; 2016; 1411():325-39. PubMed ID: 27147052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tethered MNase Structure Probing as Versatile Technique for Analyzing RNPs Using Tagging Cassettes for Homologous Recombination in Saccharomyces cerevisiae.
    Teubl F; Schwank K; Ohmayer U; Griesenbeck J; Tschochner H; Milkereit P
    Methods Mol Biol; 2022; 2533():127-145. PubMed ID: 35796986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polynucleosomal synthesis of poly(ADP-ribose) causes chromatin unfolding as determined by micrococcal nuclease digestion.
    Perez-Lamigueiro MA; Alvarez-Gonzalez R
    Ann N Y Acad Sci; 2004 Dec; 1030():593-8. PubMed ID: 15659842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Resolution ChIP-MNase Mapping of Nucleosome Positions at Selected Genomic Loci and Alleles.
    van Essen D; Oruba A; Saccani S
    Methods Mol Biol; 2021; 2351():123-145. PubMed ID: 34382187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micrococcal Nuclease Digestion Assays for the Analysis of Chromosome Structure in Archaea.
    Maruyama H
    Methods Mol Biol; 2022; 2516():29-38. PubMed ID: 35922619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of chromatin release during digestion of nuclei with micrococcal nuclease: preferential solubilization of nascent RNA at low enzyme concentration.
    Telford DJ; Stewart BW
    Int J Biochem; 1989; 21(11):1235-40. PubMed ID: 2482203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Profiling of H3K4me3 Modification in Plants using Cleavage under Targets and Tagmentation.
    Tao X; Gao M; Wang S; Guan X
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35532268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping regulatory factors by immunoprecipitation from native chromatin.
    Orsi GA; Kasinathan S; Zentner GE; Henikoff S; Ahmad K
    Curr Protoc Mol Biol; 2015 Apr; 110():21.31.1-21.31.25. PubMed ID: 25827087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromatin Immunoprecipitation Assay Using Micrococcal Nucleases in Mammalian Cells.
    Yamakawa T; Itakura K
    J Vis Exp; 2019 May; (147):. PubMed ID: 31132037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-Wide Profiling of Protein-DNA Interactions with Chromatin Endogenous Cleavage and High-Throughput Sequencing (ChEC-Seq ).
    Saleh MM; Tourigny JP; Zentner GE
    Methods Mol Biol; 2021; 2351():289-303. PubMed ID: 34382196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of chromatin at deoxyribonucleic acid replication forks: prenucleosomal deoxyribonucleic acid is rapidly excised from replicating simian virus 40 chromosomes by micrococcal nuclease.
    Cusick ME; Herman TM; DePamphilis ML; Wassarman PM
    Biochemistry; 1981 Nov; 20(23):6648-58. PubMed ID: 6272844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Matrix attachment regions enhance transcription of a downstream transgene and the accessibility of its promoter region to micrococcal nuclease.
    Fukuda Y; Nishikawa S
    Plant Mol Biol; 2003 Mar; 51(5):665-75. PubMed ID: 12678555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin Immunoprecipitation in Human and Yeast Cells.
    Lee JB; Keung AJ
    Methods Mol Biol; 2018; 1767():257-269. PubMed ID: 29524140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mobilization of chromatin-bound Mcm proteins by micrococcal nuclease.
    Richter A; Baack M; Holthoff HP; Ritzi M; Knippers R
    Biol Chem; 1998; 379(8-9):1181-7. PubMed ID: 9792452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ tools for chromatin structural epigenomics.
    Henikoff S; Ahmad K
    Protein Sci; 2022 Nov; 31(11):e4458. PubMed ID: 36170035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The 19-residue pro-peptide of staphylococcal nuclease has a profound secretion-enhancing ability in Escherichia coli.
    Suciu D; Inouye M
    Mol Microbiol; 1996 Jul; 21(1):181-95. PubMed ID: 8843444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phage display of catalytically active staphylococcal nuclease.
    Ku J; Schultz PG
    Bioorg Med Chem; 1994 Dec; 2(12):1413-5. PubMed ID: 7788304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq).
    Carter B; Ku WL; Kang JY; Hu G; Perrie J; Tang Q; Zhao K
    Nat Commun; 2019 Aug; 10(1):3747. PubMed ID: 31431618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.