These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31233061)

  • 21. Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites.
    Zare Y; Rhee KY
    RSC Adv; 2019 Dec; 10(1):424-433. PubMed ID: 35492511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of polymer type and carbon nanotube properties on carbon nanotube/polymer nanocomposite biodegradation.
    Frank BP; Goodwin DG; Bohutskyi P; Phan DC; Lu X; Kuwama L; Bouwer EJ; Fairbrother DH
    Sci Total Environ; 2020 Nov; 742():140512. PubMed ID: 32721719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A molecular dynamics investigation for predicting the effect of various parameters on the mechanical properties of carbon nanotube-reinforced aluminum nanocomposites.
    Patel PR; Sharma S; Tiwari SK
    J Mol Model; 2020 Aug; 26(9):238. PubMed ID: 32813056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of microorganisms with polymer nanocomposite surfaces containing oxidized carbon nanotubes.
    Goodwin DG; Marsh KM; Sosa IB; Payne JB; Gorham JM; Bouwer EJ; Fairbrother DH
    Environ Sci Technol; 2015 May; 49(9):5484-92. PubMed ID: 25811739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding.
    Zhang LQ; Yang SG; Li L; Yang B; Huang HD; Yan DX; Zhong GJ; Xu L; Li ZM
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40156-40167. PubMed ID: 30383958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon nanotube wires and cables: near-term applications and future perspectives.
    Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B
    Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes.
    Tamayo-Vegas S; Muhsan A; Liu C; Tarfaoui M; Lafdi K
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.
    Spanos P; Elsbernd P; Ward B; Koenck T
    Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120494. PubMed ID: 23690646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The viability and limitations of percolation theory in modeling the electrical behavior of carbon nanotube-polymer composites.
    Xu S; Rezvanian O; Peters K; Zikry MA
    Nanotechnology; 2013 Apr; 24(15):155706. PubMed ID: 23519025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Packing morphology of wavy nanofiber arrays.
    Stein IY; Wardle BL
    Phys Chem Chem Phys; 2016 Jan; 18(2):694-9. PubMed ID: 26658525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting the effective thermal conductivity of carbon nanotube based nanofluids.
    Venkata Sastry NN; Bhunia A; Sundararajan T; Das SK
    Nanotechnology; 2008 Feb; 19(5):055704. PubMed ID: 21817618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes.
    Bao WS; Meguid SA; Zhu ZH; Meguid MJ
    Nanotechnology; 2011 Dec; 22(48):485704. PubMed ID: 22071680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using the Equivalent Fiber Approach in Two-Scale Modeling of the Elastic Behavior of Carbon Nanotube/Epoxy Nanocomposite.
    Javadinejad M; Mashayekhi M; Karevan M; Hadavinia H
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polymer Composite Containing Carbon Nanotubes and their Applications.
    Park SH; Bae J
    Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Waste to Value-Added Product: Developing Electrically Conductive Nanocomposites Using a Non-Recyclable Plastic Waste Containing Vulcanized Rubber.
    Ahmadian Hoseini AH; Erfanian E; Kamkar M; Sundararaj U; Liu J; Arjmand M
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aerosol approach for hollow spheres of a porous 3D carbon nanotube/CuO network and their anodic properties for lithium-ion battery.
    Kim Y; Cha S; Lee J; Hong S
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9143-7. PubMed ID: 25971026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites.
    Yu S; Juay YK; Young MS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of Carbon Nanotube/Polymer Nanocomposites using a Monoculture.
    Goodwin DG; Boyer I; Devahif T; Gao C; Frank BP; Lu X; Kuwama L; Gordon TB; Wang J; Ranville JF; Bouwer EJ; Fairbrother DH
    Environ Sci Technol; 2018 Jan; 52(1):40-51. PubMed ID: 29161037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.