BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31233838)

  • 1. Cell-intrinsic PD-1 promotes proliferation in pancreatic cancer by targeting CYR61/CTGF via the hippo pathway.
    Pu N; Gao S; Yin H; Li JA; Wu W; Fang Y; Zhang L; Rong Y; Xu X; Wang D; Kuang T; Jin D; Yu J; Lou W
    Cancer Lett; 2019 Sep; 460():42-53. PubMed ID: 31233838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CYR61/CCN1 Regulates dCK and CTGF and Causes Gemcitabine-resistant Phenotype in Pancreatic Ductal Adenocarcinoma.
    Maity G; Ghosh A; Gupta V; Haque I; Sarkar S; Das A; Dhar K; Bhavanasi S; Gunewardena SS; Von Hoff DD; Mallik S; Kambhampati S; Banerjee SK; Banerjee S
    Mol Cancer Ther; 2019 Apr; 18(4):788-800. PubMed ID: 30787177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling.
    Maity G; Haque I; Ghosh A; Dhar G; Gupta V; Sarkar S; Azeem I; McGregor D; Choudhary A; Campbell DR; Kambhampati S; Banerjee SK; Banerjee S
    J Biol Chem; 2018 Mar; 293(12):4334-4349. PubMed ID: 29414775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine demethylase 2 (KDM2B) regulates hippo pathway via MOB1 to promote pancreatic ductal adenocarcinoma (PDAC) progression.
    Quan M; Chen Z; Jiao F; Xiao X; Xia Q; Chen J; Chao Q; Li Y; Gao Y; Yang H; Wang L; Cui J
    J Exp Clin Cancer Res; 2020 Jan; 39(1):13. PubMed ID: 31941533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer.
    Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H
    J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer.
    Nie H; Huang PQ; Jiang SH; Yang Q; Hu LP; Yang XM; Li J; Wang YH; Li Q; Zhang YF; Zhu L; Zhang YL; Yu Y; Xiao GG; Sun YW; Ji J; Zhang ZG
    Theranostics; 2021; 11(8):3898-3915. PubMed ID: 33664869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-pancreatic tumor efficacy of a Listeria-based, Annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies.
    Kim VM; Blair AB; Lauer P; Foley K; Che X; Soares K; Xia T; Muth ST; Kleponis J; Armstrong TD; Wolfgang CL; Jaffee EM; Brockstedt D; Zheng L
    J Immunother Cancer; 2019 May; 7(1):132. PubMed ID: 31113479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer.
    Fan P; Zhao J; Meng Z; Wu H; Wang B; Wu H; Jin X
    J Exp Clin Cancer Res; 2019 Feb; 38(1):47. PubMed ID: 30709380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer.
    Pu N; Zhao G; Yin H; Li JA; Nuerxiati A; Wang D; Xu X; Kuang T; Jin D; Lou W; Wu W
    J Transl Med; 2018 Oct; 16(1):294. PubMed ID: 30359281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
    Mace TA; Shakya R; Pitarresi JR; Swanson B; McQuinn CW; Loftus S; Nordquist E; Cruz-Monserrate Z; Yu L; Young G; Zhong X; Zimmers TA; Ostrowski MC; Ludwig T; Bloomston M; Bekaii-Saab T; Lesinski GB
    Gut; 2018 Feb; 67(2):320-332. PubMed ID: 27797936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options.
    Kabacaoglu D; Ciecielski KJ; Ruess DA; Algül H
    Front Immunol; 2018; 9():1878. PubMed ID: 30158932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERK Inhibition Improves Anti-PD-L1 Immune Checkpoint Blockade in Preclinical Pancreatic Ductal Adenocarcinoma.
    Henry KE; Mack KN; Nagle VL; Cornejo M; Michel AO; Fox IL; Davydova M; Dilling TR; Pillarsetty N; Lewis JS
    Mol Cancer Ther; 2021 Oct; 20(10):2026-2034. PubMed ID: 34349003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cotargeting of epidermal growth factor receptor and PI3K overcomes PI3K-Akt oncogenic dependence in pancreatic ductal adenocarcinoma.
    Wong MH; Xue A; Julovi SM; Pavlakis N; Samra JS; Hugh TJ; Gill AJ; Peters L; Baxter RC; Smith RC
    Clin Cancer Res; 2014 Aug; 20(15):4047-58. PubMed ID: 24895459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer.
    Ma Y; Li J; Wang H; Chiu Y; Kingsley CV; Fry D; Delaney SN; Wei SC; Zhang J; Maitra A; Yee C
    Gastroenterology; 2020 Jul; 159(1):306-319.e12. PubMed ID: 32179091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DHA-SBT-1214 Taxoid Nanoemulsion and Anti-PD-L1 Antibody Combination Therapy Enhances Antitumor Efficacy in a Syngeneic Pancreatic Adenocarcinoma Model.
    Ahmad G; Mackenzie GG; Egan J; Amiji MM
    Mol Cancer Ther; 2019 Nov; 18(11):1961-1972. PubMed ID: 31439714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.
    Jiang SH; Li J; Dong FY; Yang JY; Liu DJ; Yang XM; Wang YH; Yang MW; Fu XL; Zhang XX; Li Q; Pang XF; Huo YM; Li J; Zhang JF; Lee HY; Lee SJ; Qin WX; Gu JR; Sun YW; Zhang ZG
    Gastroenterology; 2017 Jul; 153(1):277-291.e19. PubMed ID: 28315323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-binding protein Musashi2 regulates Hippo signaling via SAV1 and MOB1 in pancreatic cancer.
    Yang H; Hu J; Chen J; Chen Z; Jiao F; Cui J; Quan M; Wang L
    Med Oncol; 2020 Aug; 37(9):84. PubMed ID: 32780197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming growth factor β receptor signaling restrains growth of pancreatic carcinoma cells.
    Zhao Z; Xi H; Xu D; Li C
    Tumour Biol; 2015 Sep; 36(10):7711-6. PubMed ID: 25934336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RASSF1A-Hippo pathway link in patients with urothelial carcinoma of bladder: plausible therapeutic target.
    Khandelwal M; Anand V; Appunni S; Seth A; Singh P; Mathur S; Sharma A
    Mol Cell Biochem; 2020 Jan; 464(1-2):51-63. PubMed ID: 31754973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer.
    Yamamoto K; Tateishi K; Kudo Y; Hoshikawa M; Tanaka M; Nakatsuka T; Fujiwara H; Miyabayashi K; Takahashi R; Tanaka Y; Ijichi H; Nakai Y; Isayama H; Morishita Y; Aoki T; Sakamoto Y; Hasegawa K; Kokudo N; Fukayama M; Koike K
    Oncotarget; 2016 Sep; 7(38):61469-61484. PubMed ID: 27528027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.