These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31233881)

  • 1. Evolutionary trends of digestion and absorption in the major insect orders.
    Terra WR; Ferreira C
    Arthropod Struct Dev; 2019 Jun; ():. PubMed ID: 31233881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary trends of digestion and absorption in the major insect orders.
    Terra WR; Ferreira C
    Arthropod Struct Dev; 2020 May; 56():100931. PubMed ID: 32203883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology and biochemistry of insect digestion: an evolutionary perspective.
    Terra WR
    Braz J Med Biol Res; 1988; 21(4):675-734. PubMed ID: 3071386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera.
    Gazara RK; Cardoso C; Bellieny-Rabelo D; Ferreira C; Terra WR; Venancio TM
    Gene; 2017 Sep; 627():85-93. PubMed ID: 28600180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect midgut carboxypeptidases with emphasis on S10 hemipteran and M14 lepidopteran carboxypeptidases.
    Ferreira C; Rebola KG; Cardoso C; Bragatto I; Ribeiro AF; Terra WR
    Insect Mol Biol; 2015 Apr; 24(2):222-39. PubMed ID: 25488368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digestive peptidase evolution in holometabolous insects led to a divergent group of enzymes in Lepidoptera.
    Dias RO; Via A; Brandão MM; Tramontano A; Silva-Filho MC
    Insect Biochem Mol Biol; 2015 Mar; 58():1-11. PubMed ID: 25600115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.
    Whiting MF; Carpenter JC; Wheeler QD; Wheeler WC
    Syst Biol; 1997 Mar; 46(1):1-68. PubMed ID: 11975347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Evolution of Endophagy in Herbivorous Insects.
    Tooker JF; Giron D
    Front Plant Sci; 2020; 11():581816. PubMed ID: 33250909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation.
    Rewitz KF; O'Connor MB; Gilbert LI
    Insect Biochem Mol Biol; 2007 Aug; 37(8):741-53. PubMed ID: 17628274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-feeding transcriptomics reveals essential genes expressed in the midgut of the desert locust.
    Van Lommel J; Holtof M; Tilleman L; Cools D; Vansteenkiste S; Polgun D; Verdonck R; Van Nieuwerburgh F; Vanden Broeck J
    Front Physiol; 2023; 14():1232545. PubMed ID: 37692997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects : Insect insulator proteins.
    Pauli T; Vedder L; Dowling D; Petersen M; Meusemann K; Donath A; Peters RS; Podsiadlowski L; Mayer C; Liu S; Zhou X; Heger P; Wiehe T; Hering L; Mayer G; Misof B; Niehuis O
    BMC Genomics; 2016 Nov; 17(1):861. PubMed ID: 27809783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera.
    Li Y; Zhang R; Liu S; Donath A; Peters RS; Ware J; Misof B; Niehuis O; Pfrender ME; Zhou X
    BMC Evol Biol; 2017 Dec; 17(1):269. PubMed ID: 29281964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathepsins L and B in Dysdercus peruvianus, Rhodnius prolixus, and Mahanarva fimbriolata. Looking for enzyme adaptations to digestion.
    Pimentel AC; Dias RO; Bifano TD; Genta FA; Ferreira C; Terra WR
    Insect Biochem Mol Biol; 2020 Dec; 127():103488. PubMed ID: 33080312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized alpha/beta motifs.
    Dassanayake RS; Silva Gunawardene YI; Tobe SS
    Peptides; 2007 Jan; 28(1):62-75. PubMed ID: 17161505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phylogenomic approach to resolve the basal pterygote divergence.
    Simon S; Strauss S; von Haeseler A; Hadrys H
    Mol Biol Evol; 2009 Dec; 26(12):2719-30. PubMed ID: 19713325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematics of holometabolous insect orders based on 18S ribosomal RNA.
    Pashley DP; McPheron BA; Zimmer EA
    Mol Phylogenet Evol; 1993 Jun; 2(2):132-42. PubMed ID: 8025720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A full repertoire of Hemiptera genomes reveals a multi-step evolutionary trajectory of auto-RNA editing site in insect
    Ma L; Zheng C; Xu S; Xu Y; Song F; Tian L; Cai W; Li H; Duan Y
    RNA Biol; 2023 Jan; 20(1):703-714. PubMed ID: 37676051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic distribution of TTAGG telomeric repeats in insects.
    Frydrychová R; Grossmann P; Trubac P; Vítková M; Marec F
    Genome; 2004 Feb; 47(1):163-78. PubMed ID: 15060613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digestion of bacteria and the role of midgut lysozyme in some insect larvae.
    Lemos FJ; Terra WR
    Comp Biochem Physiol B; 1991; 100(2):265-8. PubMed ID: 1799969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting protein domain variability in the core RNA interference machinery of five insect orders.
    Arraes FBM; Martins-de-Sa D; Noriega Vasquez DD; Melo BP; Faheem M; de Macedo LLP; Morgante CV; Barbosa JARG; Togawa RC; Moreira VJV; Danchin EGJ; Grossi-de-Sa MF
    RNA Biol; 2021 Nov; 18(11):1653-1681. PubMed ID: 33302789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.