These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1256 related articles for article (PubMed ID: 31233891)
1. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Mollica PA; Booth-Creech EN; Reid JA; Zamponi M; Sullivan SM; Palmer XL; Sachs PC; Bruno RD Acta Biomater; 2019 Sep; 95():201-213. PubMed ID: 31233891 [TBL] [Abstract][Full Text] [Related]
2. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
3. A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Reid JA; Palmer XL; Mollica PA; Northam N; Sachs PC; Bruno RD Sci Rep; 2019 May; 9(1):7466. PubMed ID: 31097753 [TBL] [Abstract][Full Text] [Related]
4. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform. Reid JA; Mollica PA; Bruno RD; Sachs PC Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139 [TBL] [Abstract][Full Text] [Related]
5. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520 [TBL] [Abstract][Full Text] [Related]
6. Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue. Romanazzo S; Vedicherla S; Moran C; Kelly DJ J Tissue Eng Regen Med; 2018 Mar; 12(3):e1826-e1835. PubMed ID: 29105354 [TBL] [Abstract][Full Text] [Related]
8. High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. Shukla P; Bera AK; Yeleswarapu S; Pati F Macromol Biosci; 2024 Aug; 24(8):e2400035. PubMed ID: 38685795 [TBL] [Abstract][Full Text] [Related]
9. Distinct phenotypes of cancer cells on tissue matrix gel. Ruud KF; Hiscox WC; Yu I; Chen RK; Li W Breast Cancer Res; 2020 Jul; 22(1):82. PubMed ID: 32736579 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. Saheli M; Sepantafar M; Pournasr B; Farzaneh Z; Vosough M; Piryaei A; Baharvand H J Cell Biochem; 2018 Jun; 119(6):4320-4333. PubMed ID: 29247536 [TBL] [Abstract][Full Text] [Related]
11. Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks. Shi W; Mirza S; Kuss M; Liu B; Hartin A; Wan S; Kong Y; Mohapatra B; Krishnan M; Band H; Band V; Duan B Adv Healthc Mater; 2023 Oct; 12(26):e2300905. PubMed ID: 37422447 [TBL] [Abstract][Full Text] [Related]
12. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. Sumbal J; Budkova Z; Traustadóttir GÁ; Koledova Z J Mammary Gland Biol Neoplasia; 2020 Dec; 25(4):273-288. PubMed ID: 33210256 [TBL] [Abstract][Full Text] [Related]
13. Decellularized Extracellular Matrix Composite Hydrogel Bioinks for the Development of 3D Bioprinted Head and Neck in Vitro Tumor Models. Kort-Mascort J; Bao G; Elkashty O; Flores-Torres S; Munguia-Lopez JG; Jiang T; Ehrlicher AJ; Mongeau L; Tran SD; Kinsella JM ACS Biomater Sci Eng; 2021 Nov; 7(11):5288-5300. PubMed ID: 34661396 [TBL] [Abstract][Full Text] [Related]
14. ECM Based Bioink for Tissue Mimetic 3D Bioprinting. Nam SY; Park SH Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042 [TBL] [Abstract][Full Text] [Related]
15. Deployable extrusion bioprinting of compartmental tumoroids with cancer associated fibroblasts for immune cell interactions. Mazzaglia C; Sheng Y; Rodrigues LN; Lei IM; Shields JD; Huang YYS Biofabrication; 2023 Jan; 15(2):. PubMed ID: 36626838 [TBL] [Abstract][Full Text] [Related]
16. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Wang D; Guo Y; Zhu J; Liu F; Xue Y; Huang Y; Zhu B; Wu D; Pan H; Gong T; Lu Y; Yang Y; Wang Z Acta Biomater; 2023 Jul; 165():86-101. PubMed ID: 35803504 [TBL] [Abstract][Full Text] [Related]
17. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Huang S; Yao B; Xie J; Fu X Acta Biomater; 2016 Mar; 32():170-177. PubMed ID: 26747979 [TBL] [Abstract][Full Text] [Related]
18. 3D printed tissue models: From hydrogels to biomedical applications. Cadamuro F; Nicotra F; Russo L J Control Release; 2023 Feb; 354():726-745. PubMed ID: 36682728 [TBL] [Abstract][Full Text] [Related]
19. Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories. Bernal PN; Bouwmeester M; Madrid-Wolff J; Falandt M; Florczak S; Rodriguez NG; Li Y; Größbacher G; Samsom RA; van Wolferen M; van der Laan LJW; Delrot P; Loterie D; Malda J; Moser C; Spee B; Levato R Adv Mater; 2022 Apr; 34(15):e2110054. PubMed ID: 35166410 [TBL] [Abstract][Full Text] [Related]
20. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Zhang YS; Arneri A; Bersini S; Shin SR; Zhu K; Goli-Malekabadi Z; Aleman J; Colosi C; Busignani F; Dell'Erba V; Bishop C; Shupe T; Demarchi D; Moretti M; Rasponi M; Dokmeci MR; Atala A; Khademhosseini A Biomaterials; 2016 Dec; 110():45-59. PubMed ID: 27710832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]