These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31234057)

  • 1. Potential improvement of photosynthetic CO
    Galmés J; Capó-Bauçà S; Niinemets Ü; Iñiguez C
    Curr Opin Plant Biol; 2019 Jun; 49():60-67. PubMed ID: 31234057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.
    Galmés J; Hermida-Carrera C; Laanisto L; Niinemets Ü
    J Exp Bot; 2016 Sep; 67(17):5067-91. PubMed ID: 27406782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rubisco Catalytic Properties and Temperature Response in Crops.
    Hermida-Carrera C; Kapralov MV; Galmés J
    Plant Physiol; 2016 Aug; 171(4):2549-61. PubMed ID: 27329223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubisco catalytic properties optimized for present and future climatic conditions.
    Galmés J; Conesa MÀ; Díaz-Espejo A; Mir A; Perdomo JA; Niinemets U; Flexas J
    Plant Sci; 2014 Sep; 226():61-70. PubMed ID: 25113451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity.
    Iñiguez C; Aguiló-Nicolau P; Galmés J
    Biochem Soc Trans; 2021 Nov; 49(5):2007-2019. PubMed ID: 34623388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae).
    Galmés J; Andralojc PJ; Kapralov MV; Flexas J; Keys AJ; Molins A; Parry MA; Conesa MÀ
    New Phytol; 2014 Aug; 203(3):989-99. PubMed ID: 24861241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.
    Sharwood RE; Ghannoum O; Whitney SM
    Curr Opin Plant Biol; 2016 Jun; 31():135-42. PubMed ID: 27131319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain.
    Galmés J; Kapralov MV; Copolovici LO; Hermida-Carrera C; Niinemets Ü
    Photosynth Res; 2015 Feb; 123(2):183-201. PubMed ID: 25515770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination between leaf CO
    Galmés J; Molins A; Flexas J; Conesa MÀ
    Plant Cell Environ; 2017 Oct; 40(10):2081-2094. PubMed ID: 28622707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.
    Carmo-Silva AE; Salvucci ME
    Planta; 2012 Nov; 236(5):1433-45. PubMed ID: 22733425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temperature response of C(3) and C(4) photosynthesis.
    Sage RF; Kubien DS
    Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO
    Iñiguez C; Capó-Bauçà S; Niinemets Ü; Stoll H; Aguiló-Nicolau P; Galmés J
    Plant J; 2020 Feb; 101(4):897-918. PubMed ID: 31820505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The temperature response of photosynthesis in tobacco with reduced amounts of Rubisco.
    Kubien DS; Sage RF
    Plant Cell Environ; 2008 Apr; 31(4):407-18. PubMed ID: 18182015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis.
    Prins A; Orr DJ; Andralojc PJ; Reynolds MP; Carmo-Silva E; Parry MA
    J Exp Bot; 2016 Mar; 67(6):1827-38. PubMed ID: 26798025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in the k(cat) of Rubisco in C(3) and C(4) plants and some implications for photosynthetic performance at high and low temperature.
    Sage RF
    J Exp Bot; 2002 Apr; 53(369):609-20. PubMed ID: 11886880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C
    Sharwood RE; Ghannoum O; Kapralov MV; Gunn LH; Whitney SM
    Nat Plants; 2016 Nov; 2():16186. PubMed ID: 27892943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. During photosynthetic induction, biochemical and stomatal limitations differ between Brassica crops.
    Taylor SH; Orr DJ; Carmo-Silva E; Long SP
    Plant Cell Environ; 2020 Nov; 43(11):2623-2636. PubMed ID: 32740963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.
    Scafaro AP; Xiang S; Long BM; Bahar NHA; Weerasinghe LK; Creek D; Evans JR; Reich PB; Atkin OK
    Glob Chang Biol; 2017 Jul; 23(7):2783-2800. PubMed ID: 27859952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions.
    Ainsworth EA; Rogers A
    Plant Cell Environ; 2007 Mar; 30(3):258-270. PubMed ID: 17263773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.