These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31234100)

  • 1. Feasible atomic-resolution electron tomography for general crystal surfaces by quantitative reconstruction from a high-resolution image.
    Shen RH; Ming WQ; Chen JH; He YT; Mi SB; Ma CS
    Ultramicroscopy; 2019 Oct; 205():27-38. PubMed ID: 31234100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface precipitates formed on annealed LSAT (001) single crystal.
    Ohashi K; Okada S; Sasaki K; Tokunaga T; Kobayashi S; Yamamoto T
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i20. PubMed ID: 25359813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of High-Resolution X-Ray Tomography With Atomic Force Microscopy.
    Kalukin AR; Winn B; Wang Y; Jacobsen C; Levine ZH; Fu J
    J Res Natl Inst Stand Technol; 2000; 105(6):867-74. PubMed ID: 27551641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of dynamical scattering on quantitative contrast for aberration-corrected transmission electron microscope images.
    Wen C; Smith DJ
    Micron; 2016 Oct; 89():77-86. PubMed ID: 27522350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of surface atom positions in a thick crystal as determined by a reconstructed exit wave.
    Kawasaki T; Taya M; Takai Y
    J Electron Microsc (Tokyo); 2003; 52(4):375-81. PubMed ID: 14599099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiple scattering algorithm for three dimensional phase contrast atomic electron tomography.
    Ren D; Ophus C; Chen M; Waller L
    Ultramicroscopy; 2020 Jan; 208():112860. PubMed ID: 31704623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: prospects of atomic resolution electron tomography.
    Jinschek JR; Batenburg KJ; Calderon HA; Kilaas R; Radmilovic V; Kisielowski C
    Ultramicroscopy; 2008 May; 108(6):589-604. PubMed ID: 18082327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of atomic-scale chemical composition at semiconductor heteroepitaxial interfaces by high-resolution transmission electron microscopy.
    Wen C; Ma YJ
    Micron; 2018 Mar; 106():48-58. PubMed ID: 29331739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of amorphous layers on ADF-STEM imaging.
    Mkhoyan KA; Maccagnano-Zacher SE; Kirkland EJ; Silcox J
    Ultramicroscopy; 2008 Jul; 108(8):791-803. PubMed ID: 18374489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscopic properties of interfacial ordering in amorphous germanium on Si(111) determined by quantitative digital image series matching.
    Thiel K; Borgardt NI; Plikat B; Seibt M
    Ultramicroscopy; 2013 Mar; 126():1-9. PubMed ID: 23376400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical limits on atomic resolution.
    Van Dyck D; Van Aert S; den Dekker AJ
    Microsc Microanal; 2004 Feb; 10(1):153-7. PubMed ID: 15306080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-line three-dimensional holography of nanocrystalline objects at atomic resolution.
    Chen FR; Van Dyck D; Kisielowski C
    Nat Commun; 2016 Feb; 7():10603. PubMed ID: 26887849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution.
    Chen CC; Zhu C; White ER; Chiu CY; Scott MC; Regan BC; Marks LD; Huang Y; Miao J
    Nature; 2013 Apr; 496(7443):74-7. PubMed ID: 23535594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron tomography at 2.4-ångström resolution.
    Scott MC; Chen CC; Mecklenburg M; Zhu C; Xu R; Ercius P; Dahmen U; Regan BC; Miao J
    Nature; 2012 Mar; 483(7390):444-7. PubMed ID: 22437612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials.
    Zhang D; Zhu Y; Liu L; Ying X; Hsiung CE; Sougrat R; Li K; Han Y
    Science; 2018 Feb; 359(6376):675-679. PubMed ID: 29348363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Resolution Imaging of Halide Perovskites.
    Yu Y; Zhang D; Kisielowski C; Dou L; Kornienko N; Bekenstein Y; Wong AB; Alivisatos AP; Yang P
    Nano Lett; 2016 Dec; 16(12):7530-7535. PubMed ID: 27960472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-dependent imaging of individual dopant atoms in silicon.
    Voyles PM; Muller DA; Kirkland EJ
    Microsc Microanal; 2004 Apr; 10(2):291-300. PubMed ID: 15306055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of annular bright-field phase images in STEM.
    Ishida T; Kawasaki T; Tanji T; Ikuta T
    Microscopy (Oxf); 2015 Apr; 64(2):121-8. PubMed ID: 25568080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution transmission electron microscopy to study very thin crystalline layers buried at an amorphous-crystalline interface.
    Re M; Carlino E; Sorba L; Franciosi A; Muller BH
    Micron; 2000 Jun; 31(3):237-43. PubMed ID: 10702972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.