BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 31234262)

  • 1. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction.
    Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ
    Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B
    Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic mitigation in paddy soils by using microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Chang HC; Zhang J; Wells M; Ren YX; Chen Z
    Environ Pollut; 2018 Jul; 238():647-655. PubMed ID: 29614474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron.
    Huang R; Wang X; Xing B
    Environ Pollut; 2019 Dec; 255(Pt 1):113249. PubMed ID: 31542664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains.
    Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ
    Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO
    Li B; Zhou S; Wei D; Long J; Peng L; Tie B; Williams PN; Lei M
    Sci Total Environ; 2019 Feb; 650(Pt 1):546-556. PubMed ID: 30205344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation.
    Sukitprapanon T; Suddhiprakarn A; Kheoruenromne I; Gilkes RJ
    Chemosphere; 2018 Apr; 197():691-702. PubMed ID: 29407833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils.
    Chen C; Li L; Huang K; Zhang J; Xie WY; Lu Y; Dong X; Zhao FJ
    ISME J; 2019 Oct; 13(10):2523-2535. PubMed ID: 31227814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils.
    Zhang J; Zhao S; Xu Y; Zhou W; Huang K; Tang Z; Zhao FJ
    Environ Sci Technol; 2017 Apr; 51(8):4377-4386. PubMed ID: 28358982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic and cadmium bioavailability to rice (Oryza sativa L.) plant in paddy soil: Influence of sulfate application.
    Yan S; Yang J; Si Y; Tang X; Ma Y; Ye W
    Chemosphere; 2022 Nov; 307(Pt 1):135641. PubMed ID: 35817182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction.
    Burton ED; Johnston SG; Kocar BD
    Environ Sci Technol; 2014 Dec; 48(23):13660-7. PubMed ID: 25346449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea.
    Yang K; Jeong S; Jho EH; Nam K
    Environ Geochem Health; 2016 Dec; 38(6):1347-1354. PubMed ID: 26769492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils.
    Zou L; Jiang O; Zhang S; Duan G; Gustave W; An X; Tang X
    Environ Res; 2024 May; 249():118421. PubMed ID: 38325790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur amendments to soil decrease inorganic arsenic accumulation in rice grain under flooded and nonflooded conditions: Insights from temporal dynamics of porewater chemistry and solid-phase arsenic solubility.
    Wisawapipat W; Chooaiem N; Aramrak S; Chittamart N; Nookabkaew S; Rangkadilok N; Satayavivad J; Christl I
    Sci Total Environ; 2021 Jul; 779():146352. PubMed ID: 34030276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of arsenic-contaminated paddy soil by iron-modified biochar.
    Wu C; Cui M; Xue S; Li W; Huang L; Jiang X; Qian Z
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20792-20801. PubMed ID: 29756185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations.
    Hashimoto Y; Kanke Y
    Environ Pollut; 2018 Jul; 238():617-623. PubMed ID: 29609173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil.
    Zou L; Zhang S; Duan D; Liang X; Shi J; Xu J; Tang X
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8888-8902. PubMed ID: 29330821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation.
    Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG
    Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.