BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 31234335)

  • 1. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems.
    Zhu D; Long Q; Xu Y; Xing J
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.
    Ozcelikkale A; Moon HR; Linnes M; Han B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28198106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic formulation of nanoparticles for biomedical applications.
    Shepherd SJ; Issadore D; Mitchell MJ
    Biomaterials; 2021 Jul; 274():120826. PubMed ID: 33965797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Nanoparticles for Drug Delivery.
    Liu Y; Yang G; Hui Y; Ranaweera S; Zhao CX
    Small; 2022 Sep; 18(36):e2106580. PubMed ID: 35396770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic technologies for nanoparticle formation.
    Tian F; Cai L; Liu C; Sun J
    Lab Chip; 2022 Feb; 22(3):512-529. PubMed ID: 35048096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microengineered Organ-on-a-chip Platforms towards Personalized Medicine.
    Kankala RK; Wang SB; Chen AZ
    Curr Pharm Des; 2018; 24(45):5354-5366. PubMed ID: 30799783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles.
    Abdelkarim M; Perez-Davalos L; Abdelkader Y; Abostait A; Labouta HI
    Expert Opin Drug Deliv; 2023 Jan; 20(1):13-30. PubMed ID: 36440475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the Effective Density of Airborne Nanoparticles in Real Time Using a Microfluidic Nanoparticle Analysis Chip.
    Kwon HB; Song WY; Lee TH; Lee SS; Kim YJ
    ACS Sens; 2021 Jan; 6(1):137-147. PubMed ID: 33404228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip.
    Kwak B; Ozcelikkale A; Shin CS; Park K; Han B
    J Control Release; 2014 Nov; 194():157-67. PubMed ID: 25194778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organ-on-a-chip platforms for studying drug delivery systems.
    Bhise NS; Ribas J; Manoharan V; Zhang YS; Polini A; Massa S; Dokmeci MR; Khademhosseini A
    J Control Release; 2014 Sep; 190():82-93. PubMed ID: 24818770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening.
    Ahn J; Ko J; Lee S; Yu J; Kim Y; Jeon NL
    Adv Drug Deliv Rev; 2018 Mar; 128():29-53. PubMed ID: 29626551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects.
    Sood A; Kumar A; Gupta VK; Kim CM; Han SS
    ACS Biomater Sci Eng; 2023 Jan; 9(1):62-84. PubMed ID: 36541361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organ-on-chip systems as a model for nanomedicine.
    Stavrou M; Phung N; Grimm J; Andreou C
    Nanoscale; 2023 Jun; 15(23):9927-9940. PubMed ID: 37254663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering and evaluating drug delivery particles in microfluidic devices.
    Björnmalm M; Yan Y; Caruso F
    J Control Release; 2014 Sep; 190():139-49. PubMed ID: 24794898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.
    Shi J; Xiao Z; Kamaly N; Farokhzad OC
    Acc Chem Res; 2011 Oct; 44(10):1123-34. PubMed ID: 21692448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions.
    Tarim EA; Anil Inevi M; Ozkan I; Kecili S; Bilgi E; Baslar MS; Ozcivici E; Oksel Karakus C; Tekin HC
    Biomed Microdevices; 2023 Mar; 25(2):10. PubMed ID: 36913137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active microfluidic reactor-assisted controlled synthesis of nanoparticles and related potential biomedical applications.
    Kamat V; Dey P; Bodas D; Kaushik A; Boymelgreen A; Bhansali S
    J Mater Chem B; 2023 Jun; 11(25):5650-5667. PubMed ID: 37221948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening.
    Lee JB; Sung JH
    Biotechnol J; 2013 Nov; 8(11):1258-66. PubMed ID: 24038956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.
    Bayda S; Hadla M; Palazzolo S; Riello P; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4269-4303. PubMed ID: 29284391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.