BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 31234335)

  • 21. Blood-Vessel-on-a-Chip Platforms for Evaluating Nanoparticle Drug Delivery Systems.
    Li Y; Zhu K; Liu X; Zhang YS
    Curr Drug Metab; 2018; 19(2):100-109. PubMed ID: 28952434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in diagnostic microfluidics.
    Burklund A; Tadimety A; Nie Y; Hao N; Zhang JXJ
    Adv Clin Chem; 2020; 95():1-72. PubMed ID: 32122520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective.
    Sosa-Hernández JE; Villalba-Rodríguez AM; Romero-Castillo KD; Aguilar-Aguila-Isaías MA; García-Reyes IE; Hernández-Antonio A; Ahmed I; Sharma A; Parra-Saldívar R; Iqbal HMN
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic Assisted Nanoprecipitation of PLGA Nanoparticles for Curcumin Delivery to Leukemia Jurkat Cells.
    Leung MHM; Shen AQ
    Langmuir; 2018 Apr; 34(13):3961-3970. PubMed ID: 29544247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescent nanoparticles for the accurate detection of drug delivery.
    Priem B; Tian C; Tang J; Zhao Y; Mulder WJ
    Expert Opin Drug Deliv; 2015; 12(12):1881-94. PubMed ID: 26292712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticle-Mediated Drug Delivery Systems For The Treatment Of IBD: Current Perspectives.
    Yang C; Merlin D
    Int J Nanomedicine; 2019; 14():8875-8889. PubMed ID: 32009785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip.
    Zheng W; Jiang B; Hao Y; Zhao Y; Zhang W; Jiang X
    Biofabrication; 2014 Sep; 6(4):045004. PubMed ID: 25215884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis.
    Kim JA; Hong S; Rhee WJ
    World J Stem Cells; 2019 Oct; 11(10):803-816. PubMed ID: 31693013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels.
    Boutchuen A; Zimmerman D; Arabshahi A; Melnyczuk J; Palchoudhury S
    Beilstein J Nanotechnol; 2020; 11():296-309. PubMed ID: 32117668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions.
    Bale SS; Borenstein JT
    Drug Metab Dispos; 2018 Nov; 46(11):1638-1646. PubMed ID: 30115643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles.
    Chiesa E; Dorati R; Pisani S; Conti B; Bergamini G; Modena T; Genta I
    Pharmaceutics; 2018 Dec; 10(4):. PubMed ID: 30544868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.
    Martins JP; Torrieri G; Santos HA
    Expert Opin Drug Deliv; 2018 May; 15(5):469-479. PubMed ID: 29508630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: Evaluation of their potential for colon-specific delivery.
    Ma Y; Fuchs AV; Boase NR; Rolfe BE; Coombes AG; Thurecht KJ
    Eur J Pharm Biopharm; 2015 Aug; 94():393-403. PubMed ID: 26117186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic technologies for accelerating the clinical translation of nanoparticles.
    Valencia PM; Farokhzad OC; Karnik R; Langer R
    Nat Nanotechnol; 2012 Oct; 7(10):623-9. PubMed ID: 23042546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy.
    Seo M; Gorelikov I; Williams R; Matsuura N
    Langmuir; 2010 Sep; 26(17):13855-60. PubMed ID: 20666507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic approaches for producing lipid-based nanoparticles for drug delivery applications.
    Piunti C; Cimetta E
    Biophys Rev (Melville); 2023 Sep; 4(3):031304. PubMed ID: 38505779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-step flow synthesis of size-controlled polymer nanogels in a fluorocarbon microfluidic chip.
    Montalbo RCK; Wu MJ; Tu HL
    RSC Adv; 2024 Apr; 14(16):11258-11265. PubMed ID: 38590347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.