These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 31234335)

  • 41. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.
    Sims LB; Curtis LT; Frieboes HB; Steinbach-Rankins JM
    J Nanobiotechnology; 2016 Apr; 14():33. PubMed ID: 27102372
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly.
    Al-Ahmady ZS; Donno R; Gennari A; Prestat E; Marotta R; Mironov A; Newman L; Lawrence MJ; Tirelli N; Ashford M; Kostarelos K
    Langmuir; 2019 Oct; 35(41):13318-13331. PubMed ID: 31478662
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved microfluidic platform for simultaneous multiple drug screening towards personalized treatment.
    Mitxelena-Iribarren O; Zabalo J; Arana S; Mujika M
    Biosens Bioelectron; 2019 Jan; 123():237-243. PubMed ID: 30224287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery.
    Cheng J; Teply BA; Sherifi I; Sung J; Luther G; Gu FX; Levy-Nissenbaum E; Radovic-Moreno AF; Langer R; Farokhzad OC
    Biomaterials; 2007 Feb; 28(5):869-76. PubMed ID: 17055572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Therapeutic Fluorescent Hybrid Nanoparticles for Traceable Delivery of Glucocorticoids to Inflammatory Sites.
    Napp J; Markus MA; Heck JG; Dullin C; Möbius W; Gorpas D; Feldmann C; Alves F
    Theranostics; 2018; 8(22):6367-6383. PubMed ID: 30613305
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow.
    Huang K; Boerhan R; Liu C; Jiang G
    Mol Pharm; 2017 Dec; 14(12):4618-4627. PubMed ID: 29096441
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic condensation nanoparticle counter using water as the condensing liquid for assessing individual exposure to airborne nanoparticles.
    Kwon HB; Yoo SJ; Kim YJ
    Lab Chip; 2020 Mar; 20(6):1092-1102. PubMed ID: 32031547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery.
    Eckmann DM; Bradley RP; Kandy SK; Patil K; Janmey PA; Radhakrishnan R
    Curr Opin Struct Biol; 2020 Oct; 64():104-110. PubMed ID: 32731155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.
    Yang F; Liao X; Tian Y; Li G
    Biotechnol J; 2017 Apr; 12(4):. PubMed ID: 28166394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prospects and Opportunities for Microsystems and Microfluidic Devices in the Field of Otorhinolaryngology.
    Hwang SH; Gonzalez-Suarez AM; Stybayeva G; Revzin A
    Clin Exp Otorhinolaryngol; 2021 Feb; 14(1):29-42. PubMed ID: 32772034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
    Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A
    Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.
    Xu Z; Lu C; Riordon J; Sinton D; Moffitt MG
    Langmuir; 2016 Dec; 32(48):12781-12789. PubMed ID: 27934536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanoparticles and Microfluidic Devices in Cancer Research.
    Maia FR; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():161-171. PubMed ID: 32285370
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluating nanomedicine with microfluidics.
    He Z; Ranganathan N; Li P
    Nanotechnology; 2018 Dec; 29(49):492001. PubMed ID: 30215611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.