These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 31234335)

  • 61. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluating nanomedicine with microfluidics.
    He Z; Ranganathan N; Li P
    Nanotechnology; 2018 Dec; 29(49):492001. PubMed ID: 30215611
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Organs-on-a-chip: a new tool for drug discovery.
    Polini A; Prodanov L; Bhise NS; Manoharan V; Dokmeci MR; Khademhosseini A
    Expert Opin Drug Discov; 2014 Apr; 9(4):335-52. PubMed ID: 24620821
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation.
    Ma Z; Li B; Peng J; Gao D
    Pharmaceutics; 2022 Feb; 14(2):. PubMed ID: 35214166
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Applications of nanoparticles in cancer medicine and beyond: optical and multimodal in vivo imaging, tissue targeting and drug delivery.
    Biffi S; Voltan R; Rampazzo E; Prodi L; Zauli G; Secchiero P
    Expert Opin Drug Deliv; 2015; 12(12):1837-49. PubMed ID: 26289673
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip.
    Azizipour N; Avazpour R; Rosenzweig DH; Sawan M; Ajji A
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32570945
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model.
    Ozcelikkale A; Shin K; Noe-Kim V; Elzey BD; Dong Z; Zhang JT; Kim K; Kwon IC; Park K; Han B
    J Control Release; 2017 Nov; 266():129-139. PubMed ID: 28939108
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets.
    Seo M; Matsuura N
    Langmuir; 2014 Oct; 30(42):12465-73. PubMed ID: 25188556
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity.
    Cooper DL; Conder CM; Harirforoosh S
    Expert Opin Drug Deliv; 2014 Oct; 11(10):1661-80. PubMed ID: 25054316
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties.
    Sukhanova A; Bozrova S; Sokolov P; Berestovoy M; Karaulov A; Nabiev I
    Nanoscale Res Lett; 2018 Feb; 13(1):44. PubMed ID: 29417375
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Labeling nanoparticles: Dye leakage and altered cellular uptake.
    Snipstad S; Hak S; Baghirov H; Sulheim E; Mørch Ý; Lélu S; von Haartman E; Bäck M; Nilsson KPR; Klymchenko AS; de Lange Davies C; Åslund AKO
    Cytometry A; 2017 Aug; 91(8):760-766. PubMed ID: 27077940
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of intracochlear drug delivery devices in the management of inner ear disease.
    Ayoob AM; Borenstein JT
    Expert Opin Drug Deliv; 2015 Mar; 12(3):465-79. PubMed ID: 25347140
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear?
    Ding S; Xie S; Chen W; Wen L; Wang J; Yang F; Chen G
    Eur J Pharm Sci; 2019 Jan; 126():11-22. PubMed ID: 29499347
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Recent Advances in Nanoparticle-Based Targeted Drug-Delivery Systems Against Cancer and Role of Tumor Microenvironment.
    Ashfaq UA; Riaz M; Yasmeen E; Yousaf MZ
    Crit Rev Ther Drug Carrier Syst; 2017; 34(4):317-353. PubMed ID: 29199588
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials.
    Gdowski A; Johnson K; Shah S; Gryczynski I; Vishwanatha J; Ranjan A
    J Nanobiotechnology; 2018 Feb; 16(1):12. PubMed ID: 29433518
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism
    Gonzalez-Moragas L; Maurer LL; Harms VM; Meyer JN; Laromaine A; Roig A
    Mater Horiz; 2017 Sep; 4(5):719-746. PubMed ID: 29057078
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanoparticle-based assays in automated flow systems: A review.
    Passos ML; Pinto PC; Santos JL; Saraiva ML; Araujo AR
    Anal Chim Acta; 2015 Aug; 889():22-34. PubMed ID: 26343425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.