These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31234414)

  • 1. Simultaneous Floating-Base Estimation of Human Kinematics and Joint Torques.
    Latella C; Traversaro S; Ferigo D; Tirupachuri Y; Rapetti L; Andrade Chavez FJ; Nori F; Pucci D
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependent-Gaussian-Process-Based Learning of Joint Torques Using Wearable Smart Shoes for Exoskeleton.
    Yang J; Yin Y
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse dynamics of mechanical multibody systems: An improved algorithm that ensures consistency between kinematics and external forces.
    Faber H; van Soest AJ; Kistemaker DA
    PLoS One; 2018; 13(9):e0204575. PubMed ID: 30265727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
    Dallmann CJ; Dürr V; Schmitz J
    Proc Biol Sci; 2016 Jan; 283(1823):. PubMed ID: 26791608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements.
    Blajer W; Dziewiecki K; Mazur Z
    Comput Methods Biomech Biomed Engin; 2015; 18(4):362-75. PubMed ID: 23758087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A probabilistic method to estimate gait kinetics in the absence of ground reaction force measurements.
    Tanghe K; Afschrift M; Jonkers I; De Groote F; De Schutter J; Aertbeliën E
    J Biomech; 2019 Nov; 96():109327. PubMed ID: 31526586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unbiased Estimation of Human Joint Intrinsic Mechanical Properties During Movement.
    Guarin DL; Kearney RE
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1975-1984. PubMed ID: 30235139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion.
    Paternoster FK; Seiberl W; Hahn D; Schwirtz A
    J Biomech; 2016 Mar; 49(5):773-779. PubMed ID: 26903409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a model-based inverse kinematics approach based on wearable inertial sensors.
    Tagliapietra L; Modenese L; Ceseracciu E; Mazzà C; Reggiani M
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):834-844. PubMed ID: 30466324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated spatial localization of ankle muscle sites and model-based estimation of joint torque post-stroke via a wearable sensorised leg garment.
    Simonetti D; Hendriks M; Herijgers J; Cuerdo Del Rio C; Koopman B; Keijsers N; Sartori M
    J Electromyogr Kinesiol; 2023 Oct; 72():102808. PubMed ID: 37573851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the model's degree of freedom on human body dynamics identification.
    Maita D; Venture G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4609-12. PubMed ID: 24110761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time and reduced-complexity approach to the detection and monitoring of static joint overloading in humans.
    Kim W; Lee J; Tsagarakis N; Ajoudani A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():828-834. PubMed ID: 28813923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Neural Network Estimation of Ankle Torques From Electromyography and Accelerometry.
    Siu HC; Sloboda J; McKindles RJ; Stirling LA
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1624-1633. PubMed ID: 34388093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Phase-Invariant Linear Torque-Angle-Velocity Relation Hidden in Human Walking Data.
    Altinkaynak ES; Braun DJ
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):702-711. PubMed ID: 30794187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of joint torque in dynamic activities using wearable A-mode ultrasound.
    Jin Y; Alvarez JT; Suitor EL; Swaminathan K; Chin A; Civici US; Nuckols RW; Howe RD; Walsh CJ
    Nat Commun; 2024 Jul; 15(1):5756. PubMed ID: 38982087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization-based prediction of asymmetric human gait.
    Xiang Y; Arora JS; Abdel-Malek K
    J Biomech; 2011 Feb; 44(4):683-93. PubMed ID: 21092968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.