BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31234720)

  • 21. Computational design and evaluation of β-sheet breaker peptides for destabilizing Alzheimer's amyloid-β
    Shuaib S; Narang SS; Goyal D; Goyal B
    J Cell Biochem; 2019 Oct; 120(10):17935-17950. PubMed ID: 31162715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of anthocyanidins on the conformational transition of Aβ
    Zakaria N; Wan Harun WMRS; Mohammad Latif MA; Azaman SNA; Abdul Rahman MB; Faujan NH
    J Mol Graph Model; 2024 Jun; 129():108732. PubMed ID: 38412813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico investigation on the inhibition of Aβ
    Dutta M; Mattaparthi VSK
    J Biomol Struct Dyn; 2018 Feb; 36(3):741-752. PubMed ID: 28278027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity.
    Jin Y; Sun Y; Lei J; Wei G
    Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling structural interconversion in Alzheimers' amyloid beta peptide with classical and intrinsically disordered protein force fields.
    Wu KY; Doan D; Medrano M; Chang CA
    J Biomol Struct Dyn; 2022; 40(20):10005-10022. PubMed ID: 34152264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into Molecular Mechanisms of EGCG and Apigenin on Disrupting Amyloid-Beta Protofibrils Based on Molecular Dynamics Simulations.
    Fang M; Zhang Q; Guan P; Su K; Wang X; Hu X
    J Phys Chem B; 2022 Oct; 126(41):8155-8165. PubMed ID: 36219848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into β-amyloid transition prevention by cucurbit[7]uril from molecular modeling.
    de Oliveira OV; Gonçalves ADS; Almeida NEC
    J Biomol Struct Dyn; 2022; 40(20):9602-9612. PubMed ID: 34042019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations.
    Liu FF; Liu Z; Bai S; Dong XY; Sun Y
    J Chem Phys; 2012 Apr; 136(14):145101. PubMed ID: 22502547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Insights into the Inhibitory Effect of GV971 Components Derived from Marine Acidic Oligosaccharides against the Conformational Transition of Aβ42 Monomers.
    Jiang L; Sun Q; Li L; Lu F; Liu F
    ACS Chem Neurosci; 2021 Oct; 12(19):3772-3784. PubMed ID: 34565139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process.
    Hernández-Rodríguez M; Correa-Basurto J; Benitez-Cardoza CG; Resendiz-Albor AA; Rosales-Hernández MC
    Protein Sci; 2013 Oct; 22(10):1320-35. PubMed ID: 23904252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study.
    Gupta S; Dasmahapatra AK
    J Biomol Struct Dyn; 2023 Feb; 41(2):581-598. PubMed ID: 34856889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How Does the Mono-Triazole Derivative Modulate Aβ
    Kaur A; Kaur A; Goyal D; Goyal B
    ACS Omega; 2020 Jun; 5(25):15606-15619. PubMed ID: 32637837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Searching for improved mimetic peptides inhibitors preventing conformational transition of amyloid-β
    Gera J; Szögi T; Bozsó Z; Fülöp L; Barrera EE; Rodriguez AM; Méndez L; Delpiccolo CML; Mata EG; Cioffi F; Broersen K; Paragi G; Enriz RD
    Bioorg Chem; 2018 Dec; 81():211-221. PubMed ID: 30144634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water.
    Lee C; Ham S
    J Comput Chem; 2011 Jan; 32(2):349-55. PubMed ID: 20734314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Replica exchange molecular dynamics study of the truncated amyloid beta (11-40) trimer in solution.
    Ngo ST; Hung HM; Truong DT; Nguyen MT
    Phys Chem Chem Phys; 2017 Jan; 19(3):1909-1919. PubMed ID: 28004051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zinc binding promotes greater hydrophobicity in Alzheimer's Aβ42 peptide than copper binding: Molecular dynamics and solvation thermodynamics studies.
    Boopathi S; Dinh Quoc Huy P; Gonzalez W; Theodorakis PE; Li MS
    Proteins; 2020 Oct; 88(10):1285-1302. PubMed ID: 32419254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual effects of familial Alzheimer's disease mutations (D7H, D7N, and H6R) on amyloid β peptide: correlation dynamics and zinc binding.
    Xu L; Chen Y; Wang X
    Proteins; 2014 Dec; 82(12):3286-97. PubMed ID: 25137638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights in the structural understanding of amyloidogenicity and mutation-led conformational dynamics of amyloid beta (Aβ) through molecular dynamics simulations and principal component analysis.
    Raghavan SS; Iqbal S; Ayyadurai N; Gunasekaran K
    J Biomol Struct Dyn; 2022 Aug; 40(12):5577-5587. PubMed ID: 33438527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying the key residues instrumental in imparting stability to amyloid beta protofibrils - a comparative study using MD simulations of 17-42 residues.
    Dutta MS; Basu S
    J Biomol Struct Dyn; 2021 Feb; 39(2):431-456. PubMed ID: 31900057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of C-Terminal Fragments of Amyloid β-Protein as Aβ Inhibitors: Do C-Terminal Interactions Play a Key Role in Their Inhibitory Activity?
    Zheng X; Wu C; Liu D; Li H; Bitan G; Shea JE; Bowers MT
    J Phys Chem B; 2016 Mar; 120(8):1615-23. PubMed ID: 26439281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.