BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 31234785)

  • 41. Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids.
    Swanson-Wagner RA; DeCook R; Jia Y; Bancroft T; Ji T; Zhao X; Nettleton D; Schnable PS
    Science; 2009 Nov; 326(5956):1118-20. PubMed ID: 19965432
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize (
    Xue M; Han X; Zhang L; Chen S
    Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids.
    Ko DK; Rohozinski D; Song Q; Taylor SH; Juenger TE; Harmon FG; Chen ZJ
    PLoS Genet; 2016 Jul; 12(7):e1006197. PubMed ID: 27467757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dissection of heterosis manifestation during early maize root development.
    Paschold A; Marcon C; Hoecker N; Hochholdinger F
    Theor Appl Genet; 2010 Jan; 120(2):383-8. PubMed ID: 19526205
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MicroRNA transcriptomic analysis of the sixth leaf of maize (Zea mays L.) revealed a regulatory mechanism of jointing stage heterosis.
    Hou G; Dong Y; Zhu F; Zhao Q; Li T; Dou D; Ma X; Wu L; Ku L; Chen Y
    BMC Plant Biol; 2020 Nov; 20(1):541. PubMed ID: 33256592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptomic Analysis of Three Differentially Senescing Maize (
    Han X; Zhang D; Hao H; Luo Y; Zhu Z; Kuai B
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissimilar Manifestation of Heterosis in Superhybrid Rice at Early-Tillering Stage under Nutrient-Deficient and Nutrient-Sufficient Condition.
    Gu L; Wu Y; Jiang M; Si W; Zhang X; Tian D; Yang S
    Plant Physiol; 2016 Oct; 172(2):1142-1153. PubMed ID: 27540108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating the molecular genetic basis of heterosis for internode expansion in maize by microRNA transcriptomic deep sequencing.
    Zhao P; Ding D; Zhang F; Zhao X; Xue Y; Li W; Fu Z; Li H; Tang J
    Funct Integr Genomics; 2015 May; 15(3):261-70. PubMed ID: 25394807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs.
    Shen Y; Sun S; Hua S; Shen E; Ye CY; Cai D; Timko MP; Zhu QH; Fan L
    Plant J; 2017 Sep; 91(5):874-893. PubMed ID: 28544196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MicroRNA transcriptomic analysis of heterosis during maize seed germination.
    Ding D; Wang Y; Han M; Fu Z; Li W; Liu Z; Hu Y; Tang J
    PLoS One; 2012; 7(6):e39578. PubMed ID: 22761829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptomic analyses reveal molecular mechanisms underlying growth heterosis and weakness of rubber tree seedlings.
    Yang H; Wang X; Wei Y; Deng Z; Liu H; Chen J; Dai L; Xia Z; He G; Li D
    BMC Plant Biol; 2018 Jan; 18(1):10. PubMed ID: 29316882
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relationship between differential gene expression patterns in functional leaves of maize inbreds & hybrids at spikelet differentiation stage and heterosis.
    Tian ZY; Dai JR
    Yi Chuan Xue Bao; 2003 Feb; 30(2):154-62. PubMed ID: 12776604
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated Multi-Omics Reveals Significant Roles of Non-Additively Expressed Small RNAs in Heterosis for Maize Plant Height.
    Zhang J; Xie Y; Zhang H; He C; Wang X; Cui Y; Heng Y; Lin Y; Gu R; Wang J; Fu J
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings.
    Zhang X; Lei L; Lai J; Zhao H; Song W
    BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-Parent Expression Is a General Mechanism Driving Extensive Complementation of Non-syntenic Genes in Maize Hybrids.
    Baldauf JA; Marcon C; Lithio A; Vedder L; Altrogge L; Piepho HP; Schoof H; Nettleton D; Hochholdinger F
    Curr Biol; 2018 Feb; 28(3):431-437.e4. PubMed ID: 29358068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic mapping with testcrossing associations and F
    Yan J; Wu Y; Li W; Qin X; Wang Y; Yue B
    Sci Rep; 2017 Jun; 7(1):3232. PubMed ID: 28607429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents.
    Paschold A; Jia Y; Marcon C; Lund S; Larson NB; Yeh CT; Ossowski S; Lanz C; Nettleton D; Schnable PS; Hochholdinger F
    Genome Res; 2012 Dec; 22(12):2445-54. PubMed ID: 23086286
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress.
    Frey FP; Urbany C; Hüttel B; Reinhardt R; Stich B
    BMC Genomics; 2015 Feb; 16(1):123. PubMed ID: 25766122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gene expression profiles of two intraspecific Larix lines and their reciprocal hybrids.
    Li A; Fang MD; Song WQ; Chen CB; Qi LW; Wang CG
    Mol Biol Rep; 2012 Apr; 39(4):3773-84. PubMed ID: 21750915
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines.
    Hoecker N; Lamkemeyer T; Sarholz B; Paschold A; Fladerer C; Madlung J; Wurster K; Stahl M; Piepho HP; Nordheim A; Hochholdinger F
    Proteomics; 2008 Sep; 8(18):3882-94. PubMed ID: 18704907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.