These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

749 related articles for article (PubMed ID: 31234903)

  • 1. Performance of neural network basecalling tools for Oxford Nanopore sequencing.
    Wick RR; Judd LM; Holt KE
    Genome Biol; 2019 Jun; 20(1):129. PubMed ID: 31234903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-specific basecallers improve actual accuracy of nanopore sequencing in plants.
    Ferguson S; McLay T; Andrew RL; Bruhl JJ; Schwessinger B; Borevitz J; Jones A
    Plant Methods; 2022 Dec; 18(1):137. PubMed ID: 36517904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NanoReviser: An Error-Correction Tool for Nanopore Sequencing Based on a Deep Learning Algorithm.
    Wang L; Qu L; Yang L; Wang Y; Zhu H
    Front Genet; 2020; 11():900. PubMed ID: 32903372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SACall: A Neural Network Basecaller for Oxford Nanopore Sequencing Data Based on Self-Attention Mechanism.
    Huang N; Nie F; Ni P; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):614-623. PubMed ID: 33211664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basecalling Using Joint Raw and Event Nanopore Data Sequence-to-Sequence Processing.
    Napieralski A; Nowak R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore-only assemblies for genomic surveillance of the global priority drug-resistant pathogen,
    Foster-Nyarko E; Cottingham H; Wick RR; Judd LM; Lam MMC; Wyres KL; Stanton TD; Tsang KK; David S; Aanensen DM; Brisse S; Holt KE
    Microb Genom; 2023 Feb; 9(2):. PubMed ID: 36752781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pair consensus decoding improves accuracy of neural network basecallers for nanopore sequencing.
    Silvestre-Ryan J; Holmes I
    Genome Biol; 2021 Jan; 22(1):38. PubMed ID: 33468205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data.
    Neumann D; Reddy ASN; Ben-Hur A
    BMC Bioinformatics; 2022 Apr; 23(1):142. PubMed ID: 35443610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lokatt: a hybrid DNA nanopore basecaller with an explicit duration hidden Markov model and a residual LSTM network.
    Xu X; Bhalla N; Ståhl P; Jaldén J
    BMC Bioinformatics; 2023 Dec; 24(1):461. PubMed ID: 38062356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimated Nucleotide Reconstruction Quality Symbols of Basecalling Tools for Oxford Nanopore Sequencing.
    Kuśmirek W
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of R9.4.1/Kit10 and R10/Kit12 Oxford Nanopore flowcells and chemistries in bacterial genome reconstruction.
    Sanderson ND; Kapel N; Rodger G; Webster H; Lipworth S; Street TL; Peto T; Crook D; Stoesser N
    Microb Genom; 2023 Jan; 9(1):. PubMed ID: 36748454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres.
    Tan KT; Slevin MK; Meyerson M; Li H
    Genome Biol; 2022 Aug; 23(1):180. PubMed ID: 36028900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RUBICON: a framework for designing efficient deep learning-based genomic basecallers.
    Singh G; Alser M; Denolf K; Firtina C; Khodamoradi A; Cavlak MB; Corporaal H; Mutlu O
    Genome Biol; 2024 Feb; 25(1):49. PubMed ID: 38365730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated nanopore basecalling with SLOW5 data format.
    Samarakoon H; Ferguson JM; Gamaarachchi H; Deveson IW
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37252813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the accuracy of bacterial genome reconstruction with Oxford Nanopore R10.4.1 long-read-only sequencing.
    Sanderson ND; Hopkins KMV; Colpus M; Parker M; Lipworth S; Crook D; Stoesser N
    Microb Genom; 2024 May; 10(5):. PubMed ID: 38713194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore basecalling from a perspective of instance segmentation.
    Zhang YZ; Akdemir A; Tremmel G; Imoto S; Miyano S; Shibuya T; Yamaguchi R
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):136. PubMed ID: 32321433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling.
    Pagès-Gallego M; de Ridder J
    Genome Biol; 2023 Apr; 24(1):71. PubMed ID: 37041647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MSRCall: a multi-scale deep neural network to basecall Oxford Nanopore sequences.
    Yeh YM; Lu YC
    Bioinformatics; 2022 Aug; 38(16):3877-3884. PubMed ID: 35766808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causalcall: Nanopore Basecalling Using a Temporal Convolutional Network.
    Zeng J; Cai H; Peng H; Wang H; Zhang Y; Akutsu T
    Front Genet; 2019; 10():1332. PubMed ID: 32038706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ONTbarcoder 2.0: rapid species discovery and identification with real-time barcoding facilitated by Oxford Nanopore R10.4.
    Srivathsan A; Feng V; Suárez D; Emerson B; Meier R
    Cladistics; 2024 Apr; 40(2):192-203. PubMed ID: 38041646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.