These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31235519)

  • 1. Substrate selectivity in starch polysaccharide monooxygenases.
    Vu VV; Hangasky JA; Detomasi TC; Henry SJW; Ngo ST; Span EA; Marletta MA
    J Biol Chem; 2019 Aug; 294(32):12157-12166. PubMed ID: 31235519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A family of starch-active polysaccharide monooxygenases.
    Vu VV; Beeson WT; Span EA; Farquhar ER; Marletta MA
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13822-7. PubMed ID: 25201969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases.
    Nekiunaite L; Isaksen T; Vaaje-Kolstad G; Abou Hachem M
    FEBS Lett; 2016 Aug; 590(16):2737-47. PubMed ID: 27397613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starch-degrading polysaccharide monooxygenases.
    Vu VV; Marletta MA
    Cell Mol Life Sci; 2016 Jul; 73(14):2809-19. PubMed ID: 27170366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of the Carbohydrate-Binding Module on a Fungal Starch-Active Lytic Polysaccharide Monooxygenase.
    Zhang N; Yang J; Li Z; Haider J; Zhou Y; Ji Y; Schwaneberg U; Zhu L
    J Agric Food Chem; 2023 Nov; 71(47):18405-18413. PubMed ID: 37962542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distal Hydrophobic Loop Modulates the Copper Active Site and Reaction of AA13 Polysaccharide Monooxygenases.
    Ngo ST; Phan HN; Luu CX; Le CN; Ho GT; Ngo NTC; Le LQ; Mai BK; Phung HTT; Nguyen HD; Vu KB; Vu VV
    J Phys Chem B; 2022 Oct; 126(39):7567-7578. PubMed ID: 36137238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition.
    Liu B; Kognole AA; Wu M; Westereng B; Crowley MF; Kim S; Dimarogona M; Payne CM; Sandgren M
    FEBS J; 2018 Jun; 285(12):2225-2242. PubMed ID: 29660793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of O
    Hangasky JA; Iavarone AT; Marletta MA
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4915-4920. PubMed ID: 29686097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases.
    Beeson WT; Phillips CM; Cate JH; Marletta MA
    J Am Chem Soc; 2012 Jan; 134(2):890-2. PubMed ID: 22188218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.
    Kracher D; Andlar M; Furtmüller PG; Ludwig R
    J Biol Chem; 2018 Feb; 293(5):1676-1687. PubMed ID: 29259126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases.
    Vu VV; Beeson WT; Phillips CM; Cate JH; Marletta MA
    J Am Chem Soc; 2014 Jan; 136(2):562-5. PubMed ID: 24350607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases.
    Li X; Beeson WT; Phillips CM; Marletta MA; Cate JH
    Structure; 2012 Jun; 20(6):1051-61. PubMed ID: 22578542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligosaccharide Binding and Thermostability of Two Related AA9 Lytic Polysaccharide Monooxygenases.
    Tandrup T; Tryfona T; Frandsen KEH; Johansen KS; Dupree P; Lo Leggio L
    Biochemistry; 2020 Sep; 59(36):3347-3358. PubMed ID: 32818374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates.
    Simmons TJ; Frandsen KEH; Ciano L; Tryfona T; Lenfant N; Poulsen JC; Wilson LFL; Tandrup T; Tovborg M; Schnorr K; Johansen KS; Henrissat B; Walton PH; Lo Leggio L; Dupree P
    Nat Commun; 2017 Oct; 8(1):1064. PubMed ID: 29057953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of carbohydrate binding module 20 with starch substrates.
    Ngo ST; Tran-Le PD; Ho GT; Le LQ; Bui LM; Vu BK; Thu Phung HT; Nguyen HD; Vo TS; Vu VV
    RSC Adv; 2019 Aug; 9(43):24833-24842. PubMed ID: 35528656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.
    Nekiunaite L; Arntzen MØ; Svensson B; Vaaje-Kolstad G; Abou Hachem M
    Biotechnol Biofuels; 2016; 9(1):187. PubMed ID: 27588040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.
    Phillips CM; Beeson WT; Cate JH; Marletta MA
    ACS Chem Biol; 2011 Dec; 6(12):1399-406. PubMed ID: 22004347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase.
    O'Dell WB; Agarwal PK; Meilleur F
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):767-770. PubMed ID: 28004877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Features on the Substrate-Binding Surface of Fungal Lytic Polysaccharide Monooxygenases Determine Their Oxidative Regioselectivity.
    Danneels B; Tanghe M; Desmet T
    Biotechnol J; 2019 Mar; 14(3):e1800211. PubMed ID: 30238672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction.
    O'Dell WB; Swartz PD; Weiss KL; Meilleur F
    Acta Crystallogr F Struct Biol Commun; 2017 Feb; 73(Pt 2):70-78. PubMed ID: 28177316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.