BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31235585)

  • 1. Structural basis for adenylation and thioester bond formation in the ubiquitin E1.
    Hann ZS; Ji C; Olsen SK; Lu X; Lux MC; Tan DS; Lima CD
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15475-15484. PubMed ID: 31235585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.
    Lv Z; Yuan L; Atkison JH; Aldana-Masangkay G; Chen Y; Olsen SK
    J Biol Chem; 2017 Jul; 292(29):12089-12099. PubMed ID: 28572513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer.
    Olsen SK; Lima CD
    Mol Cell; 2013 Mar; 49(5):884-96. PubMed ID: 23416107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site remodelling accompanies thioester bond formation in the SUMO E1.
    Olsen SK; Capili AD; Lu X; Tan DS; Lima CD
    Nature; 2010 Feb; 463(7283):906-12. PubMed ID: 20164921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes.
    Lu X; Olsen SK; Capili AD; Cisar JS; Lima CD; Tan DS
    J Am Chem Soc; 2010 Feb; 132(6):1748-9. PubMed ID: 20099854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S. pombe Uba1-Ubc15 Structure Reveals a Novel Regulatory Mechanism of Ubiquitin E2 Activity.
    Lv Z; Rickman KA; Yuan L; Williams K; Selvam SP; Woosley AN; Howe PH; Ogretmen B; Smogorzewska A; Olsen SK
    Mol Cell; 2017 Feb; 65(4):699-714.e6. PubMed ID: 28162934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity.
    Huang DT; Hunt HW; Zhuang M; Ohi MD; Holton JM; Schulman BA
    Nature; 2007 Jan; 445(7126):394-8. PubMed ID: 17220875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification.
    Yuan L; Lv Z; Adams MJ; Olsen SK
    Nat Commun; 2021 Apr; 12(1):2370. PubMed ID: 33888705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the human ubiquitin-activating enzyme 5 (UBA5) bound to ATP: mechanistic insights into a minimalistic E1 enzyme.
    Bacik JP; Walker JR; Ali M; Schimmer AD; Dhe-Paganon S
    J Biol Chem; 2010 Jun; 285(26):20273-80. PubMed ID: 20368332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific substrate recognition and thioester intermediate determinations in ubiquitin and SUMO conjugation cascades revealed by a high-sensitive FRET assay.
    Jiang L; Saavedra AN; Way G; Alanis J; Kung R; Li J; Xiang W; Liao J
    Mol Biosyst; 2014 Apr; 10(4):778-86. PubMed ID: 24452848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1.
    Lois LM; Lima CD
    EMBO J; 2005 Feb; 24(3):439-51. PubMed ID: 15660128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer, and ubiquitin conjugation.
    Burroughs AM; Iyer LM; Aravind L
    Proteins; 2009 Jun; 75(4):895-910. PubMed ID: 19089947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes.
    Lee I; Schindelin H
    Cell; 2008 Jul; 134(2):268-78. PubMed ID: 18662542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme.
    Lv Z; Yuan L; Atkison JH; Williams KM; Vega R; Sessions EH; Divlianska DB; Davies C; Chen Y; Olsen SK
    Nat Commun; 2018 Dec; 9(1):5145. PubMed ID: 30514846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The basis for selective E1-E2 interactions in the ISG15 conjugation system.
    Durfee LA; Kelley ML; Huibregtse JM
    J Biol Chem; 2008 Aug; 283(35):23895-902. PubMed ID: 18583345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insight into protein modification and sulfur mobilization activities of noncanonical E1 and associated ubiquitin-like proteins of Archaea.
    Hepowit NL; de Vera IM; Cao S; Fu X; Wu Y; Uthandi S; Chavarria NE; Englert M; Su D; Sӧll D; Kojetin DJ; Maupin-Furlow JA
    FEBS J; 2016 Oct; 283(19):3567-3586. PubMed ID: 27459543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling the cross reactivity of ubiquitin with the Nedd8 activating enzyme by phage display.
    Zhao B; Zhang K; Bhuripanyo K; Choi CH; Villhauer EB; Li H; Zheng N; Kiyokawa H; Schindelin H; Yin J
    PLoS One; 2013; 8(8):e70312. PubMed ID: 23936405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a human ubiquitin E1-ubiquitin complex reveals conserved functional elements essential for activity.
    Lv Z; Williams KM; Yuan L; Atkison JH; Olsen SK
    J Biol Chem; 2018 Nov; 293(47):18337-18352. PubMed ID: 30279270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules.
    Schäfer A; Kuhn M; Schindelin H
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1311-20. PubMed ID: 24816100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small ubiquitin-like modifier (SUMO) modification of E1 Cys domain inhibits E1 Cys domain enzymatic activity.
    Truong K; Lee TD; Chen Y
    J Biol Chem; 2012 May; 287(19):15154-63. PubMed ID: 22403398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.