These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31235704)

  • 1. Optimization of Bone Scaffold Porosity Distributions.
    Poh PSP; Valainis D; Bhattacharya K; van Griensven M; Dondl P
    Sci Rep; 2019 Jun; 9(1):9170. PubMed ID: 31235704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary design of bone scaffolds with reference to material selection.
    Heljak MK; Swięszkowski W; Lam CX; Hutmacher DW; Kurzydłowski KJ
    Int J Numer Method Biomed Eng; 2012; 28(6-7):789-800. PubMed ID: 25364851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A time-dependent mechanobiology-based topology optimization to enhance bone growth in tissue scaffolds.
    Wu C; Fang J; Entezari A; Sun G; Swain MV; Xu Y; Steven GP; Li Q
    J Biomech; 2021 Mar; 117():110233. PubMed ID: 33601086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial mechanical conditions within an optimized bone scaffold do not ensure bone regeneration - an in silico analysis.
    Perier-Metz C; Duda GN; Checa S
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1723-1731. PubMed ID: 34097188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.
    Boccaccio A; Uva AE; Fiorentino M; Mori G; Monno G
    PLoS One; 2016; 11(1):e0146935. PubMed ID: 26771746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Boundary-Based Scaffold Design for Tissue Engineering Applications.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2021; 2147():3-18. PubMed ID: 32840806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaffold microarchitecture determines internal bone directional growth structure: a numerical study.
    Sanz-Herrera JA; Doblaré M; García-Aznar JM
    J Biomech; 2010 Sep; 43(13):2480-6. PubMed ID: 20542275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.
    Uth N; Mueller J; Smucker B; Yousefi AM
    Biofabrication; 2017 Feb; 9(1):015023. PubMed ID: 28222045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model.
    Li J; Zhang L; Lv S; Li S; Wang N; Zhang Z
    J Biotechnol; 2011 Jan; 151(1):87-93. PubMed ID: 21056602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On stiffness of scaffolds for bone tissue engineering-a numerical study.
    Sturm S; Zhou S; Mai YW; Li Q
    J Biomech; 2010 Jun; 43(9):1738-44. PubMed ID: 20227080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined additive manufacturing approaches in tissue engineering.
    Giannitelli SM; Mozetic P; Trombetta M; Rainer A
    Acta Biomater; 2015 Sep; 24():1-11. PubMed ID: 26134665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges on optimization of 3D-printed bone scaffolds.
    Bahraminasab M
    Biomed Eng Online; 2020 Sep; 19(1):69. PubMed ID: 32883300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling, Assessment, and Design of Porous Cells Based on Schwartz Primitive Surface for Bone Scaffolds.
    Ambu R; Morabito AE
    ScientificWorldJournal; 2019; 2019():7060847. PubMed ID: 31346324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.