These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 31235750)
1. Screening of Candida albicans GRACE library revealed a unique pattern of biofilm formation under repression of the essential gene ILS1. Costa ACBP; Omran RP; Correia-Mesquita TO; Dumeaux V; Whiteway M Sci Rep; 2019 Jun; 9(1):9187. PubMed ID: 31235750 [TBL] [Abstract][Full Text] [Related]
2. Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation. Lee JA; Robbins N; Xie JL; Ketela T; Cowen LE PLoS Genet; 2016 Nov; 12(11):e1006452. PubMed ID: 27870871 [TBL] [Abstract][Full Text] [Related]
3. Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms. Cabral V; Znaidi S; Walker LA; Martin-Yken H; Dague E; Legrand M; Lee K; Chauvel M; Firon A; Rossignol T; Richard ML; Munro CA; Bachellier-Bassi S; d'Enfert C PLoS Pathog; 2014 Dec; 10(12):e1004542. PubMed ID: 25502890 [TBL] [Abstract][Full Text] [Related]
4. An expanded regulatory network temporally controls Candida albicans biofilm formation. Fox EP; Bui CK; Nett JE; Hartooni N; Mui MC; Andes DR; Nobile CJ; Johnson AD Mol Microbiol; 2015 Jun; 96(6):1226-39. PubMed ID: 25784162 [TBL] [Abstract][Full Text] [Related]
5. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. Chen HF; Lan CY PLoS One; 2015; 10(6):e0129903. PubMed ID: 26087243 [TBL] [Abstract][Full Text] [Related]
6. Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans. Peltroche-Llacsahuanga H; Goyard S; d'Enfert C; Prill SK; Ernst JF Antimicrob Agents Chemother; 2006 Oct; 50(10):3488-91. PubMed ID: 17005840 [TBL] [Abstract][Full Text] [Related]
7. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Norice CT; Smith FJ; Solis N; Filler SG; Mitchell AP Eukaryot Cell; 2007 Nov; 6(11):2046-55. PubMed ID: 17873081 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. James KM; MacDonald KW; Chanyi RM; Cadieux PA; Burton JP J Med Microbiol; 2016 Apr; 65(4):328-336. PubMed ID: 26847045 [TBL] [Abstract][Full Text] [Related]
9. A role of Candida albicans CDC4 in the negative regulation of biofilm formation. Tseng TL; Lai WC; Lee TL; Hsu WH; Sun YW; Li WC; Cheng CW; Shieh JC Can J Microbiol; 2015 Apr; 61(4):247-55. PubMed ID: 25719926 [TBL] [Abstract][Full Text] [Related]
10. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Nobile CJ; Mitchell AP Curr Biol; 2005 Jun; 15(12):1150-5. PubMed ID: 15964282 [TBL] [Abstract][Full Text] [Related]
11. Negative control of Candida albicans filamentation-associated gene expression by essential protein kinase gene KIN28. Woolford CA; Lagree K; Aleynikov T; Mitchell AP Curr Genet; 2017 Dec; 63(6):1073-1079. PubMed ID: 28501989 [TBL] [Abstract][Full Text] [Related]
12. Alternative Oxidase Promotes Biofilm Formation of Candida albicans. Wang TM; Xie XH; Li K; Deng YH; Chen H Curr Med Sci; 2018 Jun; 38(3):443-448. PubMed ID: 30074210 [TBL] [Abstract][Full Text] [Related]
13. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. Ramage G; VandeWalle K; López-Ribot JL; Wickes BL FEMS Microbiol Lett; 2002 Aug; 214(1):95-100. PubMed ID: 12204378 [TBL] [Abstract][Full Text] [Related]
14. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. Nobile CJ; Andes DR; Nett JE; Smith FJ; Yue F; Phan QT; Edwards JE; Filler SG; Mitchell AP PLoS Pathog; 2006 Jul; 2(7):e63. PubMed ID: 16839200 [TBL] [Abstract][Full Text] [Related]
15. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Bonhomme J; Chauvel M; Goyard S; Roux P; Rossignol T; d'Enfert C Mol Microbiol; 2011 May; 80(4):995-1013. PubMed ID: 21414038 [TBL] [Abstract][Full Text] [Related]
16. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. Kucharíková S; Tournu H; Lagrou K; Van Dijck P; Bujdáková H J Med Microbiol; 2011 Sep; 60(Pt 9):1261-1269. PubMed ID: 21566087 [TBL] [Abstract][Full Text] [Related]
17. Decreased accumulation or increased isoleucyl-tRNA synthetase activity confers resistance to the cyclic beta-amino acid BAY 10-8888 in Candida albicans and Candida tropicalis. Ziegelbauer K Antimicrob Agents Chemother; 1998 Jul; 42(7):1581-6. PubMed ID: 9660987 [TBL] [Abstract][Full Text] [Related]
18. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans. Verma-Gaur J; Qu Y; Harrison PF; Lo TL; Quenault T; Dagley MJ; Bellousoff M; Powell DR; Beilharz TH; Traven A PLoS Genet; 2015 Oct; 11(10):e1005590. PubMed ID: 26474309 [TBL] [Abstract][Full Text] [Related]
19. Impact of Candida albicans hyphal wall protein 1 (HWP1) genotype on biofilm production and fungal susceptibility to microglial cells. Orsi CF; Borghi E; Colombari B; Neglia RG; Quaglino D; Ardizzoni A; Morace G; Blasi E Microb Pathog; 2014; 69-70():20-7. PubMed ID: 24685698 [TBL] [Abstract][Full Text] [Related]