These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 31235906)

  • 1. A diversity of interneurons and Hebbian plasticity facilitate rapid compressible learning in the hippocampus.
    Nicola W; Clopath C
    Nat Neurosci; 2019 Jul; 22(7):1168-1181. PubMed ID: 31235906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.
    Hofer KT; Kandrács Á; Ulbert I; Pál I; Szabó C; Héja L; Wittner L
    Hippocampus; 2015 Feb; 25(2):169-86. PubMed ID: 25209976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
    Jahnke S; Timme M; Memmesheimer RM
    J Neurosci; 2015 Dec; 35(49):16236-58. PubMed ID: 26658873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning.
    Buzsáki G
    Hippocampus; 2015 Oct; 25(10):1073-188. PubMed ID: 26135716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
    Saudargiene A; Cobb S; Graham BP
    Hippocampus; 2015 Feb; 25(2):208-18. PubMed ID: 25220633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent plasticity of mouse hippocampal assemblies in vitro.
    Keller MK; Draguhn A; Both M; Reichinnek S
    Front Neural Circuits; 2015; 9():21. PubMed ID: 26041998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic plasticity of oscillating neuronal assemblies in mouse hippocampal slices.
    Zylla MM; Zhang X; Reichinnek S; Draguhn A; Both M
    PLoS One; 2013; 8(11):e80718. PubMed ID: 24260462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Routing of Hippocampal Ripples to Subcortical Structures via the Lateral Septum.
    Tingley D; Buzsáki G
    Neuron; 2020 Jan; 105(1):138-149.e5. PubMed ID: 31784288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks.
    Garrido JA; Luque NR; Tolu S; D'Angelo E
    Int J Neural Syst; 2016 Aug; 26(5):1650020. PubMed ID: 27079422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Characterization of Neurophysiological Diversity in the Lateral Supramammillary Nucleus during Hippocampal Sharp-wave Ripples of Adult Rats.
    Vicente AF; Slézia A; Ghestem A; Bernard C; Quilichini PP
    Neuroscience; 2020 May; 435():95-111. PubMed ID: 32222556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.
    Nokia MS; Mikkonen JE; Penttonen M; Wikgren J
    Front Behav Neurosci; 2012; 6():84. PubMed ID: 23316148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3.
    Ecker A; Bagi B; Vértes E; Steinbach-Németh O; Karlócai MR; Papp OI; Miklós I; Hájos N; Freund TF; Gulyás AI; Káli S
    Elife; 2022 Jan; 11():. PubMed ID: 35040779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.
    Roth FC; Beyer KM; Both M; Draguhn A; Egorov AV
    Hippocampus; 2016 Dec; 26(12):1493-1508. PubMed ID: 27479916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RippleNet: a Recurrent Neural Network for Sharp Wave Ripple (SPW-R) Detection.
    Hagen E; Chambers AR; Einevoll GT; Pettersen KH; Enger R; Stasik AJ
    Neuroinformatics; 2021 Jul; 19(3):493-514. PubMed ID: 33394388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CA3 Circuit Model Compressing Sequential Information in Theta Oscillation and Replay.
    Kuroki S; Mizuseki K
    Neural Comput; 2024 Mar; 36(4):501-548. PubMed ID: 38457750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices.
    Ul Haq R; Liotta A; Kovacs R; Rösler A; Jarosch MJ; Heinemann U; Behrens CJ
    Hippocampus; 2012 Mar; 22(3):516-33. PubMed ID: 21254303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators.
    Donoso JR; Schmitz D; Maier N; Kempter R
    J Neurosci; 2018 Mar; 38(12):3124-3146. PubMed ID: 29453207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.
    Bush D; Philippides A; Husbands P; O'Shea M
    PLoS Comput Biol; 2010 Jul; 6(7):e1000839. PubMed ID: 20617201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of network activity and spatial reach of sharp wave-ripples.
    Canakci S; Toy MF; Inci AF; Liu X; Kuzum D
    PLoS One; 2017; 12(9):e0184542. PubMed ID: 28915251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence.
    Çaliskan G; Müller I; Semtner M; Winkelmann A; Raza AS; Hollnagel JO; Rösler A; Heinemann U; Stork O; Meier JC
    Cereb Cortex; 2016 May; 26(5):2325-2340. PubMed ID: 26908632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.