These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

612 related articles for article (PubMed ID: 31235964)

  • 1. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism.
    Scheiman J; Luber JM; Chavkin TA; MacDonald T; Tung A; Pham LD; Wibowo MC; Wurth RC; Punthambaker S; Tierney BT; Yang Z; Hattab MW; Avila-Pacheco J; Clish CB; Lessard S; Church GM; Kostic AD
    Nat Med; 2019 Jul; 25(7):1104-1109. PubMed ID: 31235964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symbiotic bacteria enhance exercise performance.
    Lundberg JO; Moretti C; Benjamin N; Weitzberg E
    Br J Sports Med; 2021 Mar; 55(5):243. PubMed ID: 32447320
    [No Abstract]   [Full Text] [Related]  

  • 3. Mutualistic interactions of lactate-producing lactobacilli and lactate-utilizing Veillonella dispar: Lactate and glutamate cross-feeding for the enhanced growth and short-chain fatty acid production.
    Zhang SM; Hung JH; Yen TN; Huang SL
    Microb Biotechnol; 2024 May; 17(5):e14484. PubMed ID: 38801349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid gut microbiome changes in a world-class ultramarathon runner.
    Grosicki GJ; Durk RP; Bagley JR
    Physiol Rep; 2019 Dec; 7(24):e14313. PubMed ID: 31872558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do microbes affect athletic performance?
    Makin S
    Nature; 2021 Apr; 592(7852):S17-S19. PubMed ID: 33790460
    [No Abstract]   [Full Text] [Related]  

  • 6. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction.
    Biddle AS; Black SJ; Blanchard JL
    PLoS One; 2013; 8(10):e77599. PubMed ID: 24098591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Genomics Uncovers the Genetic Diversity and Characters of
    Han M; Liu G; Chen Y; Wang D; Zhang Y
    Front Microbiol; 2020; 11():1219. PubMed ID: 32655519
    [No Abstract]   [Full Text] [Related]  

  • 8. The Commensal Anaerobe Veillonella dispar Reprograms Its Lactate Metabolism and Short-Chain Fatty Acid Production during the Stationary Phase.
    Zhang SM; Huang SL
    Microbiol Spectr; 2023 Mar; 11(2):e0355822. PubMed ID: 36975840
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparative Pan-Genome Analysis of Oral
    Mashima I; Liao YC; Lin CH; Nakazawa F; Haase EM; Kiyoura Y; Scannapieco FA
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrite Production from Nitrate and Its Link with Lactate Metabolism in Oral
    Wicaksono DP; Washio J; Abiko Y; Domon H; Takahashi N
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769185
    [No Abstract]   [Full Text] [Related]  

  • 11. Safety evaluation of Veillonella atypica FB0054 with genotoxicity and subchronic toxicological studies.
    Preece KE; Glávits R; Murbach TS; Endres JR; Hirka G; Vértesi A; Béres E; Szakonyiné IP
    J Appl Toxicol; 2023 Jun; 43(6):808-827. PubMed ID: 36547222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy conservation by succinate decarboxylation in Veillonella parvula.
    Denger K; Schink B
    J Gen Microbiol; 1992 May; 138(5):967-71. PubMed ID: 1645132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-generation sequencing of the athletic gut microbiota: a systematic review.
    Sabater C; Iglesias-Gutiérrez E; Ruiz L; Margolles A
    Microbiome Res Rep; 2023; 2(1):5. PubMed ID: 38045609
    [No Abstract]   [Full Text] [Related]  

  • 14. Four men in a boat: Ultra-endurance exercise alters the gut microbiome.
    Keohane DM; Woods T; O'Connor P; Underwood S; Cronin O; Whiston R; O'Sullivan O; Cotter P; Shanahan F; Molloy MGM
    J Sci Med Sport; 2019 Sep; 22(9):1059-1064. PubMed ID: 31053425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic analysis of three Veillonella spp. present in carious dentine and in the saliva of caries-free individuals.
    Do T; Sheehy EC; Mulli T; Hughes F; Beighton D
    Front Cell Infect Microbiol; 2015; 5():25. PubMed ID: 25859434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host-Gut Microbiota Interactions during Inflammatory Bowel Disease.
    Leber A; Hontecillas R; Tubau-Juni N; Zoccoli-Rodriguez V; Abedi V; Bassaganya-Riera J
    Front Immunol; 2018; 9():363. PubMed ID: 29535731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is physical performance (in mice) increased by Veillonella atypica or decreased by Lactobacillus bulgaricus?
    Fernández-Sanjurjo M; Fernández J; Tomás-Zapico C; Fernández-García B; Villar CJ; Lombó F; Iglesias-Gutiérrez E
    J Sport Health Sci; 2020 May; 9(3):197-200. PubMed ID: 32444143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.
    Nummela A; Rusko H
    Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a beta2-agonist on physical performance at low temperature in elite athletes.
    Larsson K; Gavhed D; Larsson L; Holmér I; Jorfelt L; Ohlsén P
    Med Sci Sports Exerc; 1997 Dec; 29(12):1631-6. PubMed ID: 9432097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth yield increase and ATP formation linked to succinate decarboxylation in Veillonella parvula.
    Janssen PH
    Arch Microbiol; 1992; 157(5):442-5. PubMed ID: 1510569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.