These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31236039)

  • 1. Quantum advantage of unitary Clifford circuits with magic state inputs.
    Yoganathan M; Jozsa R; Strelchuk S
    Proc Math Phys Eng Sci; 2019 May; 475(2225):20180427. PubMed ID: 31236039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Classical Simulation of Clifford Circuits with Nonstabilizer Input States.
    Bu K; Koh DE
    Phys Rev Lett; 2019 Oct; 123(17):170502. PubMed ID: 31702253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing.
    Howard M; Campbell E
    Phys Rev Lett; 2017 Mar; 118(9):090501. PubMed ID: 28306308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational quantum-classical boundary of noisy commuting quantum circuits.
    Fujii K; Tamate S
    Sci Rep; 2016 May; 6():25598. PubMed ID: 27189039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive Wigner functions render classical simulation of quantum computation efficient.
    Mari A; Eisert J
    Phys Rev Lett; 2012 Dec; 109(23):230503. PubMed ID: 23368175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying magic for multi-qubit operations.
    Seddon JR; Campbell ET
    Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190251. PubMed ID: 31423103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error Mitigation for Universal Gates on Encoded Qubits.
    Piveteau C; Sutter D; Bravyi S; Gambetta JM; Temme K
    Phys Rev Lett; 2021 Nov; 127(20):200505. PubMed ID: 34860063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bound states for magic state distillation in fault-tolerant quantum computation.
    Campbell ET; Browne DE
    Phys Rev Lett; 2010 Jan; 104(3):030503. PubMed ID: 20366637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates.
    Bravyi S; Gosset D
    Phys Rev Lett; 2016 Jun; 116(25):250501. PubMed ID: 27391708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tight noise thresholds for quantum computation with perfect stabilizer operations.
    van Dam W; Howard M
    Phys Rev Lett; 2009 Oct; 103(17):170504. PubMed ID: 19905740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning Quantum Chemistry Simulations with Clifford Circuits.
    Schleich P; Boen J; Cincio L; Anand A; Kottmann JS; Tretiak S; Dub PA; Aspuru-Guzik A
    J Chem Theory Comput; 2023 Aug; 19(15):4952-4964. PubMed ID: 37490516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Quantum Algorithms for Stabilizer Entropies.
    Haug T; Lee S; Kim MS
    Phys Rev Lett; 2024 Jun; 132(24):240602. PubMed ID: 38949346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of topologically protected gates for local stabilizer codes.
    Bravyi S; König R
    Phys Rev Lett; 2013 Apr; 110(17):170503. PubMed ID: 23679695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient synthesis of universal repeat-until-success quantum circuits.
    Bocharov A; Roetteler M; Svore KM
    Phys Rev Lett; 2015 Feb; 114(8):080502. PubMed ID: 25768742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to Simulate Quantum Measurement without Computing Marginals.
    Bravyi S; Gosset D; Liu Y
    Phys Rev Lett; 2022 Jun; 128(22):220503. PubMed ID: 35714245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All Pure Fermionic Non-Gaussian States Are Magic States for Matchgate Computations.
    Hebenstreit M; Jozsa R; Kraus B; Strelchuk S; Yoganathan M
    Phys Rev Lett; 2019 Aug; 123(8):080503. PubMed ID: 31491201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Evaluation of Quantum-Circuit Error Loss Using Clifford Sampling.
    Wang Z; Chen Y; Song Z; Qin D; Li H; Guo Q; Wang H; Song C; Li Y
    Phys Rev Lett; 2021 Feb; 126(8):080501. PubMed ID: 33709761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample.
    Douce T; Markham D; Kashefi E; Diamanti E; Coudreau T; Milman P; van Loock P; Ferrini G
    Phys Rev Lett; 2017 Feb; 118(7):070503. PubMed ID: 28256857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations.
    Bremner MJ; Montanaro A; Shepherd DJ
    Phys Rev Lett; 2016 Aug; 117(8):080501. PubMed ID: 27588839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Unitary Designs with a System-Size Independent Number of Non-Clifford Gates.
    Haferkamp J; Montealegre-Mora F; Heinrich M; Eisert J; Gross D; Roth I
    Commun Math Phys; 2023; 397(3):995-1041. PubMed ID: 36743125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.