These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 31236225)
21. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Deutscher AT; Burke CM; Darling AE; Riegler M; Reynolds OL; Chapman TA Microbiome; 2018 May; 6(1):85. PubMed ID: 29729663 [TBL] [Abstract][Full Text] [Related]
22. Sex-specific effects of the microbiota on adult carbohydrate intake and body composition in a polyphagous fly. Nguyen B; Dinh H; Morimoto J; Ponton F J Insect Physiol; 2021 Oct; 134():104308. PubMed ID: 34474015 [TBL] [Abstract][Full Text] [Related]
23. Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Majumder R; Sutcliffe B; Taylor PW; Chapman TA Sci Rep; 2019 Oct; 9(1):14292. PubMed ID: 31575966 [TBL] [Abstract][Full Text] [Related]
24. Potential of a fly gut microbiota incorporated gel-based larval diet for rearing Bactrocera dorsalis (Hendel). Khan M; Seheli K; Bari MA; Sultana N; Khan SA; Sultana KF; Hossain MA BMC Biotechnol; 2019 Dec; 19(Suppl 2):94. PubMed ID: 31847853 [TBL] [Abstract][Full Text] [Related]
25. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect. Pascacio-Villafán C; Williams T; Birke A; Aluja M Sci Rep; 2016 Jul; 6():29413. PubMed ID: 27406923 [TBL] [Abstract][Full Text] [Related]
26. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival. Piper AM; Farnier K; Linder T; Speight R; Cunningham JP J Chem Ecol; 2017 Sep; 43(9):891-901. PubMed ID: 28836040 [TBL] [Abstract][Full Text] [Related]
27. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota. Deutscher AT; Reynolds OL; Chapman TA J Econ Entomol; 2017 Feb; 110(1):298-300. PubMed ID: 28039426 [TBL] [Abstract][Full Text] [Related]
28. Intraspecific larval competition in the olive fruit fly (Diptera: tephritidae). Burrack HJ; Fornell AM; Connell JH; O'Connell NV; Phillips PA; Vossen PM; Zalom FG Environ Entomol; 2009 Oct; 38(5):1400-10. PubMed ID: 19825295 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of yeasts and yeast products in larval and adult diets for the oriental fruit fly, Bactrocera dorsalis, and adult diets for the medfly, Ceratitis capitata, and the melon fly, Bactrocera curcurbitae. Ling Chang C J Insect Sci; 2009; 9():23. PubMed ID: 19613830 [TBL] [Abstract][Full Text] [Related]
31. Effect of dietary components on larval life history characteristics in the medfly (Ceratitis capitata: Diptera, Tephritidae). Nash WJ; Chapman T PLoS One; 2014; 9(1):e86029. PubMed ID: 24465851 [TBL] [Abstract][Full Text] [Related]
32. Larval cannibalism, time constraints, and adult fitness in caddisflies that inhabit temporary wetlands. Wissinger S; Steinmetz J; Alexander JS; Brown W Oecologia; 2004 Jan; 138(1):39-47. PubMed ID: 14530962 [TBL] [Abstract][Full Text] [Related]
33. Comparative adult preference-larval performance relationship between a specialist and a generalist tephritid: Implication for predicting field host-range. Lauciello N; Mille CG; Hafsi A; Jacob V; Duyck PF Ecol Evol; 2024 Aug; 14(8):e70170. PubMed ID: 39139912 [TBL] [Abstract][Full Text] [Related]
34. Larval intraspecific competition for food in the European grapevine moth Lobesia botrana. Thiéry D; Monceau K; Moreau J Bull Entomol Res; 2014 Aug; 104(4):517-24. PubMed ID: 24788023 [TBL] [Abstract][Full Text] [Related]
35. Antagonistic role of the BTB-zinc finger transcription factors Chinmo and Broad-Complex in the juvenile/pupal transition and in growth control. Chafino S; Giannios P; Casanova J; Martín D; Franch-Marro X Elife; 2023 Apr; 12():. PubMed ID: 37114765 [TBL] [Abstract][Full Text] [Related]
36. Nutrient-Dependent Impact of Microbes on Bing X; Gerlach J; Loeb G; Buchon N mBio; 2018 Mar; 9(2):. PubMed ID: 29559576 [No Abstract] [Full Text] [Related]
37. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Sasmita HI; Tu WC; Bong LJ; Neoh KB Parasit Vectors; 2019 Dec; 12(1):578. PubMed ID: 31823817 [TBL] [Abstract][Full Text] [Related]
38. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae ( Barragan-Fonseca KB; Dicke M; van Loon JJA Entomol Exp Appl; 2018 Sep; 166(9):761-770. PubMed ID: 30449896 [TBL] [Abstract][Full Text] [Related]
39. Larval competition of Chrysomya megacephala and Chrysomya rufifacies (Diptera: Calliphoridae): behavior and ecological studies of two blow fly species of forensic significance. Shiao SF; Yeh TC J Med Entomol; 2008 Jul; 45(4):785-99. PubMed ID: 18714884 [TBL] [Abstract][Full Text] [Related]
40. Microflora species and their volatile compounds affecting development of an alcohol dehydrogenase homozygous strain (Adh-I) of Bactrocera (Dacus) oleae (Diptera: Tephritidae). Konstantopoulou MA; Raptopoulos DG; Stavrakis NG; Mazomenos BE J Econ Entomol; 2005 Dec; 98(6):1943-9. PubMed ID: 16539118 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]