These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31236362)
1. Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images. Li MX; Yu SQ; Zhang W; Zhou H; Xu X; Qian TW; Wan YJ Int J Ophthalmol; 2019; 12(6):1012-1020. PubMed ID: 31236362 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous alignment and surface regression using hybrid 2D-3D networks for 3D coherent layer segmentation of retinal OCT images with full and sparse annotations. Liu H; Wei D; Lu D; Tang X; Wang L; Zheng Y Med Image Anal; 2024 Jan; 91():103019. PubMed ID: 37944431 [TBL] [Abstract][Full Text] [Related]
3. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
4. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455 [TBL] [Abstract][Full Text] [Related]
5. Retinal layer segmentation in optical coherence tomography (OCT) using a 3D deep-convolutional regression network for patients with age-related macular degeneration. Mukherjee S; De Silva T; Grisso P; Wiley H; Tiarnan DLK; Thavikulwat AT; Chew E; Cukras C Biomed Opt Express; 2022 Jun; 13(6):3195-3210. PubMed ID: 35781941 [No Abstract] [Full Text] [Related]
6. Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning. Guo Y; Hormel TT; Xiong H; Wang J; Hwang TS; Jia Y Transl Vis Sci Technol; 2020 Oct; 9(2):54. PubMed ID: 33110708 [TBL] [Abstract][Full Text] [Related]
7. LOCTseg: A lightweight fully convolutional network for end-to-end optical coherence tomography segmentation. Parra-Mora E; da Silva Cruz LA Comput Biol Med; 2022 Nov; 150():106174. PubMed ID: 36252364 [TBL] [Abstract][Full Text] [Related]
8. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images. Lin M; Bao G; Sang X; Wu Y Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040 [TBL] [Abstract][Full Text] [Related]
9. Multi-class retinal fluid joint segmentation based on cascaded convolutional neural networks. Tang W; Ye Y; Chen X; Shi F; Xiang D; Chen Z; Zhu W Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35613604 [No Abstract] [Full Text] [Related]
10. Deep Learning-Based Automatic Detection of Ellipsoid Zone Loss in Spectral-Domain OCT for Hydroxychloroquine Retinal Toxicity Screening. De Silva T; Jayakar G; Grisso P; Hotaling N; Chew EY; Cukras CA Ophthalmol Sci; 2021 Dec; 1(4):100060. PubMed ID: 36246938 [TBL] [Abstract][Full Text] [Related]
11. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks. Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802 [TBL] [Abstract][Full Text] [Related]
12. Deep Learning Based Sub-Retinal Fluid Segmentation in Central Serous Chorioretinopathy Optical Coherence Tomography Scans. Narendra Rao TJ; Girish GN; Kothari AR; Rajan J Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():978-981. PubMed ID: 31946057 [TBL] [Abstract][Full Text] [Related]
13. Loss-Modified Transformer-Based U-Net for Accurate Segmentation of Fluids in Optical Coherence Tomography Images of Retinal Diseases. Darooei R; Nazari M; Kafieh R; Rabbani H J Med Signals Sens; 2023; 13(4):253-260. PubMed ID: 37809015 [TBL] [Abstract][Full Text] [Related]
14. Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging. Wu M; Cai X; Chen Q; Ji Z; Niu S; Leng T; Rubin DL; Park H Comput Methods Programs Biomed; 2019 Dec; 182():105101. PubMed ID: 31600644 [TBL] [Abstract][Full Text] [Related]
15. Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search. Kugelman J; Alonso-Caneiro D; Read SA; Vincent SJ; Collins MJ Biomed Opt Express; 2018 Nov; 9(11):5759-5777. PubMed ID: 30460160 [TBL] [Abstract][Full Text] [Related]
16. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
17. LF-UNet - A novel anatomical-aware dual-branch cascaded deep neural network for segmentation of retinal layers and fluid from optical coherence tomography images. Ma D; Lu D; Chen S; Heisler M; Dabiri S; Lee S; Lee H; Ding GW; Sarunic MV; Beg MF Comput Med Imaging Graph; 2021 Dec; 94():101988. PubMed ID: 34717264 [TBL] [Abstract][Full Text] [Related]
18. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Roy AG; Conjeti S; Karri SPK; Sheet D; Katouzian A; Wachinger C; Navab N Biomed Opt Express; 2017 Aug; 8(8):3627-3642. PubMed ID: 28856040 [TBL] [Abstract][Full Text] [Related]
19. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
20. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Yu C; Xie S; Niu S; Ji Z; Fan W; Yuan S; Liu Q; Chen Q Med Phys; 2019 Oct; 46(10):4502-4519. PubMed ID: 31315159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]