BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 31236869)

  • 1. Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for organophosphate degradation in water.
    Hu H; Zhang H; Chen Y; Ou H
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24720-24732. PubMed ID: 31236869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient Fenton and enzyme-mimetic activities of NH
    He J; Zhang Y; Zhang X; Huang Y
    Sci Rep; 2018 Mar; 8(1):5159. PubMed ID: 29581533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino-functionalized MIL-88B as heterogeneous photo-Fenton catalysts for enhancing tris-(2-chloroisopropyl) phosphate (TCPP) degradation: Dual excitation pathways accelerate the conversion of Fe
    Liu H; Yin H; Yu X; Zhu M; Dang Z
    J Hazard Mater; 2022 Mar; 425():127782. PubMed ID: 34810008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV-driven hydroxyl radical oxidation of tris(2-chloroethyl) phosphate: Intermediate products and residual toxicity.
    Liu J; Ye J; Chen Y; Li C; Ou H
    Chemosphere; 2018 Jan; 190():225-233. PubMed ID: 28992474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective iron based metal-organic frameworks derived from zero-valent iron for highly efficient fenton-like catalysis.
    Duan L; Jiang H; Wu W; Lin D; Yang K
    J Hazard Mater; 2023 Mar; 445():130426. PubMed ID: 36462241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient removal of organophosphate esters by ligand functionalized MIL-101 (Fe): Modulated adsorption and DFT calculations.
    Fan S; Lu X; Li H; Du X; Huang X; Ma Y; Wang J; Tao X; Dang Z; Lu G
    Chemosphere; 2022 Sep; 302():134881. PubMed ID: 35561783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photo-Fenton degradation of tetracycline hydrochloride by 2, 5-dioxido-1, 4-benzenedicarboxylate-functionalized MIL-100(Fe).
    Li M; Ma Y; Jiang J; Li T; Zhang C; Han Z; Dong S
    Environ Res; 2022 Sep; 212(Pt C):113399. PubMed ID: 35561828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the performance of Fe-based metal-organic frameworks in photo-Fenton processes: Mechanisms, strategies and prospects.
    Wang Z; Cheng Y; Wang C; Guo R; You J; Zhang H
    Chemosphere; 2023 Oct; 339():139673. PubMed ID: 37536536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward efficient removal of organic pollutants in water: A tremella-like iron containing metal-organic framework in Fenton oxidation.
    Liu J; Yu H; Wang L
    Environ Technol; 2022 Jul; 43(18):2785-2795. PubMed ID: 33739227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destruction of 4-chlorophenol by the hydrogen-accelerated catalytic Fenton system enhanced by Pd/NH
    Wu JH; Li Y; Liu X; Liu F; Ma SJ; You JJ; Zhu XQ; Zhong XX; Lin ZX
    Environ Technol; 2022 Apr; 43(10):1561-1572. PubMed ID: 33115346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Activating Efficiency of Iron-copper Bimetallic Organic Framework MIL-101(Fe,Cu) Toward H
    Liang H; Liu RP; An XQ; Liu HJ
    Huan Jing Ke Xue; 2020 Oct; 41(10):4607-4614. PubMed ID: 33124393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cl-based functional group modification MIL-53(Fe) as efficient photocatalysts for degradation of tetracycline hydrochloride.
    Wang X; Ma Y; Jiang J; Li M; Li T; Li C; Dong S
    J Hazard Mater; 2022 Jul; 434():128864. PubMed ID: 35447533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of organophosphorus flame retardants in heterogeneous photo-Fenton system driven by Fe(III)-based metal organic framework: Intermediates and their potential interference on bacterial metabolism.
    Liu H; Yin H; Zhu M; Dang Z
    Chemosphere; 2022 Mar; 291(Pt 3):133072. PubMed ID: 34838833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-based metal-organic framework derived pyrolytic materials for effective Fenton-like catalysis: Performance, mechanisms and practicability.
    Ren Y; Zhang J; Ji C; Wang S; Lv L; Zhang W
    Sci Total Environ; 2022 Feb; 809():152201. PubMed ID: 34890672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemically-deposited PANI on iron mesh-based metal-organic framework with enhanced visible-light response towards elimination of thiamphenicol and E. coli.
    An J; Li Y; Chen W; Li G; He J; Feng H
    Environ Res; 2020 Dec; 191():110067. PubMed ID: 32818501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe
    Priyadarshini M; Ahmad A; Ghangrekar MM
    Environ Pollut; 2023 Apr; 322():121242. PubMed ID: 36758930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulating Lewis acidity and local electron density of iron-based metal organic frameworks via cerium doping for efficient photo-Fenton process.
    Wu M; Wu Q; Yang Y; He Z; Yang H
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):866-877. PubMed ID: 36356452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced oxidation of antihypertensives losartan and valsartan by photo-electro-Fenton at near-neutral pH using natural organic acids and a dimensional stable anode-gas diffusion electrode (DSA-GDE) system under light emission diode (LED) lighting.
    Martínez-Pachón D; Espinosa-Barrera P; Rincón-Ortíz J; Moncayo-Lasso A
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4426-4437. PubMed ID: 29971747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-Fenton degradation of carbamazepine and ibuprofen by iron-based metal-organic framework under alkaline condition.
    Sun S; Hu Y; Xu M; Cheng F; Zhang H; Li Z
    J Hazard Mater; 2022 Feb; 424(Pt C):127698. PubMed ID: 34775313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-Fenton abatement of aqueous organics using metal-organic frameworks: An advancement from benchmark zeolite.
    MacDonald MJ; Cho DW; Yu IKM; Tsang DCW; Yip ACK
    Sci Total Environ; 2018 Dec; 644():389-397. PubMed ID: 29981988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.