These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31236900)

  • 21. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Topographical disorientation in aging. Familiarity with the environment does matter.
    Lopez A; Caffò AO; Bosco A
    Neurol Sci; 2018 Sep; 39(9):1519-1528. PubMed ID: 29948464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual reality as allocentric/egocentric technology for the assessment of cognitive decline in the elderly.
    Morganti F; Riva G
    Stud Health Technol Inform; 2014; 196():278-84. PubMed ID: 24732522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Virtual environments as memory training devices in navigational tasks for older adults.
    Lokka IE; Çöltekin A; Wiener J; Fabrikant SI; Röcke C
    Sci Rep; 2018 Jul; 8(1):10809. PubMed ID: 30018315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incidental learning of allocentric and egocentric strategies by both men and women in a dual-strategy virtual Morris Water Maze.
    Ferguson TD; Livingstone-Lee SA; Skelton RW
    Behav Brain Res; 2019 May; 364():281-295. PubMed ID: 30794853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How age relates to spatial navigation performance: Functional and methodological considerations.
    van der Ham IJM; Claessen MHG
    Ageing Res Rev; 2020 Mar; 58():101020. PubMed ID: 31954190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perspective: Assessing the Flexible Acquisition, Integration, and Deployment of Human Spatial Representations and Information.
    Starrett MJ; Ekstrom AD
    Front Hum Neurosci; 2018; 12():281. PubMed ID: 30050422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial navigation in early multiple sclerosis: a neglected cognitive marker of the disease?
    Němá E; Kalina A; Nikolai T; Vyhnálek M; Meluzínová E; Laczó J
    J Neurol; 2021 Jan; 268(1):77-89. PubMed ID: 32700011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.
    Belmonti V; Cioni G; Berthoz A
    Dev Sci; 2015 Jul; 18(4):569-86. PubMed ID: 25443319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Path Learning From Navigation in Aging: The Role of Cognitive Functioning and Wayfinding Inclinations.
    Muffato V; De Beni R
    Front Hum Neurosci; 2020; 14():8. PubMed ID: 32047427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Familiar environments enhance object and spatial memory in both younger and older adults.
    Merriman NA; Ondřej J; Roudaia E; O'Sullivan C; Newell FN
    Exp Brain Res; 2016 Jun; 234(6):1555-74. PubMed ID: 26821318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced spatial navigation skills in sequence-space synesthetes.
    van Petersen E; Altgassen M; van Lier R; van Leeuwen TM
    Cortex; 2020 Sep; 130():49-63. PubMed ID: 32640374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NavWell: A simplified virtual-reality platform for spatial navigation and memory experiments.
    Commins S; Duffin J; Chaves K; Leahy D; Corcoran K; Caffrey M; Keenan L; Finan D; Thornberry C
    Behav Res Methods; 2020 Jun; 52(3):1189-1207. PubMed ID: 31637666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passively learned spatial navigation cues evoke reinforcement learning reward signals.
    Ferguson TD; Williams CC; Skelton RW; Krigolson OE
    Cognition; 2019 Aug; 189():65-75. PubMed ID: 30927659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aging specifically impairs switching to an allocentric navigational strategy.
    Harris MA; Wiener JM; Wolbers T
    Front Aging Neurosci; 2012; 4():29. PubMed ID: 23125833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perirhinal cortex involvement in allocentric spatial learning in the rat: Evidence from doubly marked tasks.
    Ramos JMJ
    Hippocampus; 2017 May; 27(5):507-517. PubMed ID: 28100028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced parahippocampal theta activity during spatial navigation in low, but not in high elderly performers.
    Lithfous S; Dufour A; Bouix C; Pebayle T; Després O
    Neuropsychology; 2018 Jan; 32(1):40-53. PubMed ID: 28661173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation.
    Taillade M; N'Kaoua B; Sauzéon H
    Front Psychol; 2015; 6():2034. PubMed ID: 26834666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does aging affect the formation of new topographical memories? Evidence from an extensive spatial training.
    Nemmi F; Boccia M; Guariglia C
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2017 Jan; 24(1):29-44. PubMed ID: 27045346
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.