These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31236900)

  • 41. Aging specifically impairs switching to an allocentric navigational strategy.
    Harris MA; Wiener JM; Wolbers T
    Front Aging Neurosci; 2012; 4():29. PubMed ID: 23125833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perirhinal cortex involvement in allocentric spatial learning in the rat: Evidence from doubly marked tasks.
    Ramos JMJ
    Hippocampus; 2017 May; 27(5):507-517. PubMed ID: 28100028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reduced parahippocampal theta activity during spatial navigation in low, but not in high elderly performers.
    Lithfous S; Dufour A; Bouix C; Pebayle T; Després O
    Neuropsychology; 2018 Jan; 32(1):40-53. PubMed ID: 28661173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation.
    Taillade M; N'Kaoua B; Sauzéon H
    Front Psychol; 2015; 6():2034. PubMed ID: 26834666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Does aging affect the formation of new topographical memories? Evidence from an extensive spatial training.
    Nemmi F; Boccia M; Guariglia C
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2017 Jan; 24(1):29-44. PubMed ID: 27045346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hippocampus-dependent spatial learning is associated with higher global cognition among healthy older adults.
    Konishi K; Mckenzie S; Etchamendy N; Roy S; Bohbot VD
    Neuropsychologia; 2017 Nov; 106():310-321. PubMed ID: 28963056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combining egoformative and alloformative cues in a novel tabletop navigation task.
    Starrett MJ; Huffman DJ; Ekstrom AD
    Psychol Res; 2023 Jul; 87(5):1644-1664. PubMed ID: 36181560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A virtual reality platform for memory evaluation: Assessing effects of spatial strategies.
    Rodríguez MF; Ramirez Butavand D; Cifuentes MV; Bekinschtein P; Ballarini F; García Bauza C
    Behav Res Methods; 2022 Dec; 54(6):2707-2719. PubMed ID: 34918216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hex Maze: A new virtual maze able to track acquisition and usage of three navigation strategies.
    Spriggs MJ; Kirk IJ; Skelton RW
    Behav Brain Res; 2018 Feb; 339():195-206. PubMed ID: 29203335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Key of the Maze: The role of mental imagery and cognitive flexibility in navigational planning.
    Bocchi A; Carrieri M; Lancia S; Quaresima V; Piccardi L
    Neurosci Lett; 2017 Jun; 651():146-150. PubMed ID: 28495273
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Missing the egocentric spatial reference: a blank on the map.
    Miniaci MC; De Leonibus E
    F1000Res; 2018; 7():168. PubMed ID: 29568496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A mirror in the sky: assessment of an augmented reality method for depicting navigational information.
    Reiner AJ; Hollands JG; Jamieson GA; Boustila S
    Ergonomics; 2020 May; 63(5):548-562. PubMed ID: 32200733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcranial direct current stimulation modulates activation and effective connectivity during spatial navigation.
    Hampstead BM; Brown GS; Hartley JF
    Brain Stimul; 2014; 7(2):314-24. PubMed ID: 24472622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The potential of virtual reality for spatial navigation research across the adult lifespan.
    Diersch N; Wolbers T
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance.
    Coutrot A; Schmidt S; Coutrot L; Pittman J; Hong L; Wiener JM; Hölscher C; Dalton RC; Hornberger M; Spiers HJ
    PLoS One; 2019; 14(3):e0213272. PubMed ID: 30883560
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Allocentric memory impaired and egocentric memory intact as assessed by virtual reality in recent-onset schizophrenia.
    Weniger G; Irle E
    Schizophr Res; 2008 Apr; 101(1-3):201-9. PubMed ID: 18276116
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Correlation between spatial navigation disorder and white matter hyperintensity in patients with mild cognitive impairment].
    Li WP; Sun Y; Yan X; Chen Q; Liu JN; Wu WB; Zhang X; Qing Z; Yin ZY; Zhao H; Xu Y; Zhang B
    Zhonghua Yi Xue Za Zhi; 2020 Sep; 100(33):2607-2611. PubMed ID: 32892607
    [No Abstract]   [Full Text] [Related]  

  • 58. From repeating routes to planning novel routes: the impact of landmarks and ageing on route integration and cognitive mapping.
    Grzeschik R; Hilton C; Dalton RC; Konovalova I; Cotterill E; Innes A; Wiener JM
    Psychol Res; 2021 Sep; 85(6):2164-2176. PubMed ID: 32929584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment.
    Weniger G; Ruhleder M; Lange C; Wolf S; Irle E
    Neuropsychologia; 2011 Feb; 49(3):518-27. PubMed ID: 21185847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of a conceptual framework for predicting navigation performance in virtual reality.
    Grübel J; Thrash T; Hölscher C; Schinazi VR
    PLoS One; 2017; 12(9):e0184682. PubMed ID: 28915266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.