These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 3123697)

  • 1. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon.
    Blais A; Bissonnette P; Berteloot A
    J Membr Biol; 1987; 99(2):113-25. PubMed ID: 3123697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Na(+)-coupled sugar transport in HT-29 cells: modulation by glucose.
    Blais A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1245-52. PubMed ID: 2058655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic separation and characterization of three sugar transport modes in Caco-2 cells.
    Bissonnette P; Gagné H; Coady MJ; Benabdallah K; Lapointe JY; Berteloot A
    Am J Physiol; 1996 May; 270(5 Pt 1):G833-43. PubMed ID: 8967496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K; Nishi Y; Takesue Y
    Biochem Pharmacol; 1983 Nov; 32(22):3453-7. PubMed ID: 6651868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney.
    Rabito CA; Ausiello DA
    J Membr Biol; 1980; 54(1):31-8. PubMed ID: 7205941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line.
    Moran A; Handler JS; Turner RJ
    Am J Physiol; 1982 Nov; 243(5):C293-8. PubMed ID: 7137338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC PK1).
    Rabito CA
    Biochim Biophys Acta; 1981 Dec; 649(2):286-96. PubMed ID: 7198488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phloretin-like action of bioflavonoids on sugar accumulation capability of isolated intestinal cells.
    Kimmich GA; Randles J
    Membr Biochem; 1978; 1(3-4):221-37. PubMed ID: 756489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of two distinct Na+/D-glucose cotransport systems in the human fetal jejunum by means of their differential specificity for 3-O-methylglucose.
    Malo C
    Biochim Biophys Acta; 1990 Feb; 1022(1):8-16. PubMed ID: 2302406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-dependent co-transport of alpha-methyl D-glucoside across the mucosal border of rabbit descending colon.
    Ilundain A; Naftalin RJ
    Biochim Biophys Acta; 1981 Jun; 644(2):316-22. PubMed ID: 7260076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole cell recording of sugar-induced currents in LLC-PK1 cells.
    Smith-Maxwell C; Bennett E; Randles J; Kimmich GA
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C234-42. PubMed ID: 2305866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of glucose transporters in human peritoneal mesothelial cells.
    Schröppel B; Fischereder M; Wiese P; Segerer S; Huber S; Kretzler M; Heiss P; Sitter T; Schlöndorff D
    Kidney Int; 1998 May; 53(5):1278-87. PubMed ID: 9573543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+/glucose cotransport in the colonic adenocarcinoma cell line HT29 cl.19A: effect of cAMP.
    Hemlin M; Huang X
    Acta Physiol Scand; 1997 Jun; 160(2):185-94. PubMed ID: 9208045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Deoxyglucose transport by intestinal epithelial cells isolated from the chick.
    Kimmich GA; Randles J
    J Membr Biol; 1976 Jun; 27(4):363-79. PubMed ID: 966264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.