These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31236979)

  • 1. Calibration of the PlusOptix PowerRef 3 with change in viewing distance, adult age and refractive error.
    Ghahghaei S; Reed O; Candy TR; Chandna A
    Ophthalmic Physiol Opt; 2019 Jul; 39(4):253-259. PubMed ID: 31236979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional simulation of eccentric photorefraction images for ametropes: factors influencing the measurement.
    Wu Y; Thibos LN; Candy TR
    Ophthalmic Physiol Opt; 2018 Jul; 38(4):432-446. PubMed ID: 29736941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of refractive error and accommodation with the photorefractor PowerRef II.
    Jainta S; Jaschinski W; Hoormann J
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):520-7. PubMed ID: 15491480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and stability of accommodation and vergence responses during sustained near tasks in uncorrected hyperopes.
    Ntodie M; Saunders K; Little JA
    Sci Rep; 2023 Sep; 13(1):14389. PubMed ID: 37658084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of infant accommodation using retinoscopy and photoretinoscopy.
    Gabriel GM; Mutti DO
    Optom Vis Sci; 2009 Mar; 86(3):208-15. PubMed ID: 19165126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor.
    Altoaimi BH; Kollbaum P; Meyer D; Bradley A
    Ophthalmic Physiol Opt; 2018 Mar; 38(2):152-163. PubMed ID: 29315718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accommodative Behavior of Young Eyes Wearing Multifocal Contact Lenses.
    Altoaimi BH; Almutairi MS; Kollbaum PS; Bradley A
    Optom Vis Sci; 2018 May; 95(5):416-427. PubMed ID: 29683985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration and validation of the 2WIN photoscreener compared to the PlusoptiX S12 and the SPOT.
    Kirk S; Armitage MD; Dunn S; Arnold RW
    J Pediatr Ophthalmol Strabismus; 2014; 51(5):289-92. PubMed ID: 25000209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the measurement of refractive error by the PowerRefractor: a remote, continuous and binocular measurement system of oculomotor function.
    Hunt OA; Wolffsohn JS; Gilmartin B
    Br J Ophthalmol; 2003 Dec; 87(12):1504-8. PubMed ID: 14660462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective accommodative amplitude and dynamics with the 1CU accommodative intraocular lens.
    Wolffsohn JS; Hunt OA; Naroo S; Gilmartin B; Shah S; Cunliffe IA; Benson MT; Mantry S
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1230-5. PubMed ID: 16505063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of Plusoptix S04 in children and teens.
    Ayse YK; Onder U; Suheyla K
    Can J Ophthalmol; 2011 Apr; 46(2):153-7. PubMed ID: 21708083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Autorefractors for Measurement of Accommodation.
    Aldaba M; Gómez-López S; Vilaseca M; Pujol J; Arjona M
    Optom Vis Sci; 2015 Oct; 92(10):1003-11. PubMed ID: 26258276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applicability of infrared photorefraction for measurement of accommodation in awake-behaving normal and strabismic monkeys.
    Bossong H; Swann M; Glasser A; Das VE
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):966-73. PubMed ID: 19029024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor).
    Choi M; Weiss S; Schaeffel F; Seidemann A; Howland HC; Wilhelm B; Wilhelm H
    Optom Vis Sci; 2000 Oct; 77(10):537-48. PubMed ID: 11100892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A population study on changes in wave aberrations with accommodation.
    Cheng H; Barnett JK; Vilupuru AS; Marsack JD; Kasthurirangan S; Applegate RA; Roorda A
    J Vis; 2004 Apr; 4(4):272-80. PubMed ID: 15134474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the PowerRefractor for measuring human infant refraction.
    Blade PJ; Candy TR
    Optom Vis Sci; 2006 Jun; 83(6):346-53. PubMed ID: 16772892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photorefraction estimates of refractive power varies with the ethnic origin of human eyes.
    Sravani NG; Nilagiri VK; Bharadwaj SR
    Sci Rep; 2015 Jan; 5():7976. PubMed ID: 25613165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous recording of accommodation and pupil size using the Shin-Nippon SRW-5000 autorefractor.
    Wolffsohn JS; Gilmartin B; Mallen EA; Tsujimura S
    Ophthalmic Physiol Opt; 2001 Mar; 21(2):108-13. PubMed ID: 11261344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic photorefraction system: an offline application for the dynamic analysis of ocular focus and pupil size from photorefraction images.
    Suryakumar R; Kwok D; Fernandez S; Bobier WR
    Comput Biol Med; 2009 Mar; 39(3):195-205. PubMed ID: 19217087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an open-field autorefractor's ability to measure refraction and hence potential to assess objective accommodation in pseudophakes.
    Wolffsohn JS; Davies LN; Naroo SA; Buckhurst PJ; Gibson GA; Gupta N; Craig JP; Shah S
    Br J Ophthalmol; 2011 Apr; 95(4):498-501. PubMed ID: 20657018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.