These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 31237127)
1. Role of MicroRNA-34a in Anti-Apoptotic Effects of Granulocyte-Colony Stimulating Factor in Diabetic Cardiomyopathy. Park IH; Song YS; Joo HW; Shen GY; Seong JH; Shin NK; Cho YJ; Lee Y; Shin JH; Lim YH; Kim H; Kim KS Diabetes Metab J; 2020 Feb; 44(1):173-185. PubMed ID: 31237127 [TBL] [Abstract][Full Text] [Related]
2. Granulocyte colony-stimulating factor reduces the endoplasmic reticulum stress in a rat model of diabetic cardiomyopathy. Park IH; Shen GY; Song YS; Jong Cho Y; Kim BS; Lee Y; Lim YH; Shin JH; Kim KS Endocr J; 2021 Nov; 68(11):1293-1301. PubMed ID: 34121048 [TBL] [Abstract][Full Text] [Related]
3. Granulocyte-colony stimulating factor reduces cardiomyocyte apoptosis and ameliorates diastolic dysfunction in Otsuka Long-Evans Tokushima Fatty rats. Shin JH; Lim YH; Song YS; So BI; Park JY; Fang CH; Lee Y; Kim H; Kim KS Cardiovasc Drugs Ther; 2014 Jun; 28(3):211-20. PubMed ID: 24771224 [TBL] [Abstract][Full Text] [Related]
4. Dihydromyricetin Prevents Diabetic Cardiomyopathy via miR-34a Suppression by Activating Autophagy. Ni T; Lin N; Lu W; Sun Z; Lin H; Chi J; Guo H Cardiovasc Drugs Ther; 2020 Jun; 34(3):291-301. PubMed ID: 32212062 [TBL] [Abstract][Full Text] [Related]
5. Role of Autophagy in Granulocyte-Colony Stimulating Factor Induced Anti-Apoptotic Effects in Diabetic Cardiomyopathy. Shen GY; Shin JH; Song YS; Joo HW; Park IH; Seong JH; Shin NK; Lee AH; Cho YJ; Lee Y; Lim YH; Kim H; Kim KS Diabetes Metab J; 2021 Jul; 45(4):594-605. PubMed ID: 33631916 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of miR-22 attenuates oxidative stress injury in diabetic cardiomyopathy via Sirt 1. Tang Q; Len Q; Liu Z; Wang W Cardiovasc Ther; 2018 Apr; 36(2):. PubMed ID: 29288528 [TBL] [Abstract][Full Text] [Related]
7. Inhibiting microRNA-144 abates oxidative stress and reduces apoptosis in hearts of streptozotocin-induced diabetic mice. Yu M; Liu Y; Zhang B; Shi Y; Cui L; Zhao X Cardiovasc Pathol; 2015; 24(6):375-81. PubMed ID: 26164195 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Li X; Du N; Zhang Q; Li J; Chen X; Liu X; Hu Y; Qin W; Shen N; Xu C; Fang Z; Wei Y; Wang R; Du Z; Zhang Y; Lu Y Cell Death Dis; 2014 Oct; 5(10):e1479. PubMed ID: 25341033 [TBL] [Abstract][Full Text] [Related]
9. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway. Liu X; Guo B; Zhang W; Ma B; Li Y J Biochem; 2021 Oct; 170(3):349-362. PubMed ID: 33837411 [TBL] [Abstract][Full Text] [Related]
10. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Yu M; Sun Y; Shan X; Yang F; Chu G; Chen Q; Han L; Guo Z; Wang G Cell Mol Biol Lett; 2022 Oct; 27(1):85. PubMed ID: 36209049 [TBL] [Abstract][Full Text] [Related]
11. Nicorandil alleviates apoptosis in diabetic cardiomyopathy through PI3K/Akt pathway. Wang X; Pan J; Liu D; Zhang M; Li X; Tian J; Liu M; Jin T; An F J Cell Mol Med; 2019 Aug; 23(8):5349-5359. PubMed ID: 31131539 [TBL] [Abstract][Full Text] [Related]
12. Long Noncoding RNA OIP5-AS1 Overexpression Promotes Viability and Inhibits High Glucose-Induced Oxidative Stress of Cardiomyocytes by Targeting MicroRNA-34a/SIRT1 Axis in Diabetic Cardiomyopathy. Sun H; Wang C; Zhou Y; Cheng X Endocr Metab Immune Disord Drug Targets; 2021; 21(11):2017-2027. PubMed ID: 33380310 [TBL] [Abstract][Full Text] [Related]
13. Effects of resveratrol on regulation on UCP2 and cardiac function in diabetic rats. Diao J; Wei J; Yan R; Fan G; Lin L; Chen M J Physiol Biochem; 2019 Feb; 75(1):39-51. PubMed ID: 30225723 [TBL] [Abstract][Full Text] [Related]
14. Upregulation of PKR pathway mediates glucolipotoxicity induced diabetic cardiomyopathy in vivo in wistar rats and in vitro in cultured cardiomyocytes. Mangali S; Bhat A; Jadhav K; Kalra J; Sriram D; Vamsi Krishna Venuganti V; Dhar A Biochem Pharmacol; 2020 Jul; 177():113948. PubMed ID: 32251680 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of prolyl hydroxylase 3 ameliorates cardiac dysfunction in diabetic cardiomyopathy. Xia Y; Gong L; Liu H; Luo B; Li B; Li R; Li B; Lv M; Pan J; An F Mol Cell Endocrinol; 2015 Mar; 403():21-9. PubMed ID: 25595486 [TBL] [Abstract][Full Text] [Related]
16. Astragalus polysaccharides inhibits cardiomyocyte apoptosis during diabetic cardiomyopathy via the endoplasmic reticulum stress pathway. Sun S; Yang S; An N; Wang G; Xu Q; Liu J; Mao Y J Ethnopharmacol; 2019 Jun; 238():111857. PubMed ID: 30959142 [TBL] [Abstract][Full Text] [Related]
17. N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats. Su W; Zhang Y; Zhang Q; Xu J; Zhan L; Zhu Q; Lian Q; Liu H; Xia ZY; Xia Z; Lei S Cardiovasc Diabetol; 2016 Oct; 15(1):146. PubMed ID: 27733157 [TBL] [Abstract][Full Text] [Related]
18. FBXL10 regulates cardiac dysfunction in diabetic cardiomyopathy via the PKC β2 pathway. Yin L; Fang Y; Song T; Lv D; Wang Z; Zhu L; Zhao Z; Yin X J Cell Mol Med; 2019 Apr; 23(4):2558-2567. PubMed ID: 30701683 [TBL] [Abstract][Full Text] [Related]