BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 31237354)

  • 41. Shack-Hartmann wave front measurements in cortical tissue for deconvolution of large three-dimensional mosaic transmitted light brightfield micrographs.
    Oberlaender M; Broser PJ; Sakmann B; Hippler S
    J Microsc; 2009 Feb; 233(2):275-89. PubMed ID: 19220694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pinhole Closure Improves Spatial Resolution in Confocal Scanning Microscopy.
    Kitamura A
    Methods Mol Biol; 2021; 2274():385-389. PubMed ID: 34050487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mirror-enhanced super-resolution microscopy.
    Yang X; Xie H; Alonas E; Liu Y; Chen X; Santangelo PJ; Ren Q; Xi P; Jin D
    Light Sci Appl; 2016; 5(6):e16134-. PubMed ID: 27398242
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immunofluorescence Microscopy of the Mammalian Golgi Apparatus.
    Arab M; Nayak SC; Vitali T; Lowe M
    Methods Mol Biol; 2023; 2557():101-111. PubMed ID: 36512212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of the Golgi apparatus is not influenced by a GAG deletion mutation in the dystonia-associated gene Tor1a.
    Mitchell SB; Iwabuchi S; Kawano H; Yuen TMT; Koh JY; Ho KWD; Harata NC
    PLoS One; 2018; 13(11):e0206123. PubMed ID: 30403723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Establishment of an optimised protocol for a Golgi-electron microscopy method based on a Golgi-Cox staining procedure with a commercial kit.
    Koyama Y; Nishida T; Tohyama M
    J Neurosci Methods; 2013 Aug; 218(1):103-9. PubMed ID: 23721893
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal nanoimprint lithography for drift correction in super-resolution fluorescence microscopy.
    Youn Y; Ishitsuka Y; Jin C; Selvin PR
    Opt Express; 2018 Jan; 26(2):1670-1680. PubMed ID: 29402038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determining factors for optimal neuronal and glial Golgi-Cox staining.
    Narayanan SN; Bairy LK; Srinivasamurthy SK
    Histochem Cell Biol; 2020 Oct; 154(4):431-448. PubMed ID: 32533234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes.
    Kubalová I; Němečková A; Weisshart K; Hřibová E; Schubert V
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672992
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales.
    Wearne SL; Rodriguez A; Ehlenberger DB; Rocher AB; Henderson SC; Hof PR
    Neuroscience; 2005; 136(3):661-80. PubMed ID: 16344143
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimising Golgi-Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease.
    Bayram-Weston Z; Olsen E; Harrison DJ; Dunnett SB; Brooks SP
    J Neurosci Methods; 2016 May; 265():81-8. PubMed ID: 26459195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Super-resolution fluorescence microscopy by stepwise optical saturation.
    Zhang Y; Nallathamby PD; Vigil GD; Khan AA; Mason DE; Boerckel JD; Roeder RK; Howard SS
    Biomed Opt Express; 2018 Apr; 9(4):1613-1629. PubMed ID: 29675306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Super-resolution Raman imaging towards visualisation of nanoplastics.
    Fang C; Luo Y; Naidu R
    Anal Methods; 2023 Oct; 15(40):5300-5310. PubMed ID: 37740357
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy.
    Schulz O; Pieper C; Clever M; Pfaff J; Ruhlandt A; Kehlenbach RH; Wouters FS; Großhans J; Bunt G; Enderlein J
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):21000-5. PubMed ID: 24324140
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Localization microscopy: mapping cellular dynamics with single molecules.
    Nelson AJ; Hess ST
    J Microsc; 2014 Apr; 254(1):1-8. PubMed ID: 24611627
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous imaging of morphological plasticity and calcium dynamics in dendrites.
    Lang SB; Bonhoeffer T; Lohmann C
    Nat Protoc; 2006; 1(4):1859-64. PubMed ID: 17487169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robert Feulgen Prize Lecture 1995. Electronic light microscopy: present capabilities and future prospects.
    Shotton DM
    Histochem Cell Biol; 1995 Aug; 104(2):97-137. PubMed ID: 8536077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated three-dimensional tracing of neurons in confocal and brightfield images.
    He W; Hamilton TA; Cohen AR; Holmes TJ; Pace C; Szarowski DH; Turner JN; Roysam B
    Microsc Microanal; 2003 Aug; 9(4):296-310. PubMed ID: 12901764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity.
    De Luca G; Breedijk R; Hoebe R; Stallinga S; Manders E
    Methods Appl Fluoresc; 2017 Jan; 5(1):015002. PubMed ID: 28120817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen.
    Sivaguru M; Urban MA; Fried G; Wesseln CJ; Mander L; Punyasena SW
    Microsc Res Tech; 2018 Feb; 81(2):101-114. PubMed ID: 27476493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.