These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31237422)

  • 1. Targeted Transcriptional Activation in Plants Using a Potent Dead Cas9-Derived Synthetic Gene Activator.
    Li Z; Wang F; Li JF
    Curr Protoc Mol Biol; 2019 Jun; 127(1):e89. PubMed ID: 31237422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex and optimization of dCas9-TV-mediated gene activation in plants.
    Xiong X; Liang J; Li Z; Gong BQ; Li JF
    J Integr Plant Biol; 2021 Apr; 63(4):634-645. PubMed ID: 33058471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice.
    Jiang W; Zhou H; Bi H; Fromm M; Yang B; Weeks DP
    Nucleic Acids Res; 2013 Nov; 41(20):e188. PubMed ID: 23999092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus.
    Peng R; Wang Y; Feng WW; Yue XJ; Chen JH; Hu XZ; Li ZF; Sheng DH; Zhang YM; Li YZ
    Microb Cell Fact; 2018 Jan; 17(1):15. PubMed ID: 29378572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems.
    Lowder LG; Paul JW; Qi Y
    Methods Mol Biol; 2017; 1629():167-184. PubMed ID: 28623586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Activation of Arabidopsis Genes by a Potent CRISPR-Act3.0 System.
    Pan C; Qi Y
    Methods Mol Biol; 2023; 2698():27-40. PubMed ID: 37682467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A potent Cas9-derived gene activator for plant and mammalian cells.
    Li Z; Zhang D; Xiong X; Yan B; Xie W; Sheen J; Li JF
    Nat Plants; 2017 Dec; 3(12):930-936. PubMed ID: 29158545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart.
    Schoger E; Carroll KJ; Iyer LM; McAnally JR; Tan W; Liu N; Noack C; Shomroni O; Salinas G; Groß J; Herzog N; Doroudgar S; Bassel-Duby R; Zimmermann WH; Zelarayán LC
    Circ Res; 2020 Jan; 126(1):6-24. PubMed ID: 31730408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii.
    Markus BM; Boydston EA; Lourido S
    mSphere; 2021 Oct; 6(5):e0047421. PubMed ID: 34643425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.
    Ma X; Zhang Q; Zhu Q; Liu W; Chen Y; Qiu R; Wang B; Yang Z; Li H; Lin Y; Xie Y; Shen R; Chen S; Wang Z; Chen Y; Guo J; Chen L; Zhao X; Dong Z; Liu YG
    Mol Plant; 2015 Aug; 8(8):1274-84. PubMed ID: 25917172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-mediated targeted T-DNA integration in rice.
    Lee K; Eggenberger AL; Banakar R; McCaw ME; Zhu H; Main M; Kang M; Gelvin SB; Wang K
    Plant Mol Biol; 2019 Mar; 99(4-5):317-328. PubMed ID: 30645710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform.
    Morita S; Horii T; Kimura M; Hatada I
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32106616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning.
    Schüller A; Wolansky L; Berger H; Studt L; Gacek-Matthews A; Sulyok M; Strauss J
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9801-9822. PubMed ID: 33006690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.
    Ma X; Liu YG
    Curr Protoc Mol Biol; 2016 Jul; 115():31.6.1-31.6.21. PubMed ID: 27366892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant Gene Regulation Using Multiplex CRISPR-dCas9 Artificial Transcription Factors.
    Lowder LG; Malzahn A; Qi Y
    Methods Mol Biol; 2018; 1676():197-214. PubMed ID: 28986912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice.
    Zhou H; Liu B; Weeks DP; Spalding MH; Yang B
    Nucleic Acids Res; 2014; 42(17):10903-14. PubMed ID: 25200087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.
    Lin S; Ewen-Campen B; Ni X; Housden BE; Perrimon N
    Genetics; 2015 Oct; 201(2):433-42. PubMed ID: 26245833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.
    Pham H; Kearns NA; Maehr R
    Methods Mol Biol; 2016; 1358():43-57. PubMed ID: 26463376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.