These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 31237588)
1. A ruthenium bisoxazoline complex as a photoredox catalyst for nitro compound reduction under visible light. Jia WG; Cheng MX; Gao LL; Tan SM; Wang C; Liu X; Lee R Dalton Trans; 2019 Jul; 48(27):9949-9953. PubMed ID: 31237588 [TBL] [Abstract][Full Text] [Related]
2. Aromatic Chlorosulfonylation by Photoredox Catalysis. Májek M; Neumeier M; Jacobi von Wangelin A ChemSusChem; 2017 Jan; 10(1):151-155. PubMed ID: 27863070 [TBL] [Abstract][Full Text] [Related]
3. A New Approach to Nitrones through Cascade Reaction of Nitro Compounds Enabled by Visible Light Photoredox Catalysis. Lin CW; Hong BC; Chang WC; Lee GH Org Lett; 2015 May; 17(10):2314-7. PubMed ID: 25895096 [TBL] [Abstract][Full Text] [Related]
4. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes. Reiser O Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932 [TBL] [Abstract][Full Text] [Related]
5. Photoassisted oxidation of ruthenium(II)-photocatalysts Ru(bpy)3(2+) and Ru(bpz)3(2+) to RuO4: orthogonal tandem photoredox and oxidation catalysis. Alpers D; Gallhof M; Stark CB; Brasholz M Chem Commun (Camb); 2016 Jan; 52(5):1025-8. PubMed ID: 26592543 [TBL] [Abstract][Full Text] [Related]
6. Visible Light Mediated Photoredox Catalytic Arylation Reactions. Ghosh I; Marzo L; Das A; Shaikh R; König B Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835 [TBL] [Abstract][Full Text] [Related]
7. The Dual Role of Gold(I) Complexes in Photosensitizer-Free Visible-Light-Mediated Gold-Catalyzed 1,2-Difunctionalization of Alkynes: A DFT Study. Liu Y; Yang Y; Zhu R; Liu C; Zhang D Chemistry; 2018 Sep; 24(53):14119-14126. PubMed ID: 30052273 [TBL] [Abstract][Full Text] [Related]
8. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant. Fabry DC; Ronge MA; Zoller J; Rueping M Angew Chem Int Ed Engl; 2015 Feb; 54(9):2801-5. PubMed ID: 25644740 [TBL] [Abstract][Full Text] [Related]
9. Metal-free carbonylations by photoredox catalysis. Majek M; Jacobi von Wangelin A Angew Chem Int Ed Engl; 2015 Feb; 54(7):2270-4. PubMed ID: 25414135 [TBL] [Abstract][Full Text] [Related]
11. New approach to oximes through reduction of nitro compounds enabled by visible light photoredox catalysis. Cai S; Zhang S; Zhao Y; Wang DZ Org Lett; 2013 Jun; 15(11):2660-3. PubMed ID: 23706186 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions. Majek M; Jacobi von Wangelin A Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097 [TBL] [Abstract][Full Text] [Related]
13. Olefin Bifunctionalization: A Visible-light Photoredox-catalyzed Aryl Alkoxylation of Olefins. Yamaguchi E; Tanaka W; Itoh A Chem Asian J; 2019 Jan; 14(1):121-124. PubMed ID: 30251357 [TBL] [Abstract][Full Text] [Related]
14. Catalytic Asymmetric Synthesis of Fluoroalkyl-Containing Compounds by Three-Component Photoredox Chemistry. Ma J; Xie X; Meggers E Chemistry; 2018 Jan; 24(1):259-265. PubMed ID: 29105857 [TBL] [Abstract][Full Text] [Related]
15. A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Wang X; Cuny GD; Noël T Angew Chem Int Ed Engl; 2013 Jul; 52(30):7860-4. PubMed ID: 23784666 [TBL] [Abstract][Full Text] [Related]
16. Asymmetric photoredox transition-metal catalysis activated by visible light. Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679 [TBL] [Abstract][Full Text] [Related]
17. Photoactive ruthenium nitrosyls as NO donors: how to sensitize them toward visible light. Fry NL; Mascharak PK Acc Chem Res; 2011 Apr; 44(4):289-98. PubMed ID: 21361269 [TBL] [Abstract][Full Text] [Related]
18. A General Copper-based Photoredox Catalyst for Organic Synthesis: Scope, Application in Natural Product Synthesis and Mechanistic Insights. Deldaele C; Michelet B; Baguia H; Kajouj S; Romero E; Moucheron C; Evano G Chimia (Aarau); 2018 Sep; 72(9):621-629. PubMed ID: 30257738 [TBL] [Abstract][Full Text] [Related]
19. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions. Zhu S; Das A; Bui L; Zhou H; Curran DP; Rueping M J Am Chem Soc; 2013 Feb; 135(5):1823-9. PubMed ID: 23330701 [TBL] [Abstract][Full Text] [Related]
20. Photoredox-catalyzed sulfonylation of alkyl iodides, sulfur dioxide, and electron-deficient alkenes. Ye S; Zheng D; Wu J; Qiu G Chem Commun (Camb); 2019 Feb; 55(15):2214-2217. PubMed ID: 30702736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]