These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31237595)

  • 1. Hydration dynamics of proteins in reverse micelles probed by
    Honegger P; Steinhauser O
    Phys Chem Chem Phys; 2019 Jul; 21(27):14571-14582. PubMed ID: 31237595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational dynamics of water molecules near biological surfaces with implications for nuclear quadrupole relaxation.
    Braun D; Schmollngruber M; Steinhauser O
    Phys Chem Chem Phys; 2016 Sep; 18(35):24620-30. PubMed ID: 27546227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward comprehensive measurement of protein hydration dynamics: Facilitation of NMR-based methods by reverse micelle encapsulation.
    Gallo PN; Iovine JC; Nucci NV
    Methods; 2018 Sep; 148():146-153. PubMed ID: 30048681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing Protein Hydration Dynamics Using Solution NMR Spectroscopy.
    Jorge C; Marques BS; Valentine KG; Wand AJ
    Methods Enzymol; 2019; 615():77-101. PubMed ID: 30638541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic nuclear polarization enhanced nuclear magnetic resonance and electron spin resonance studies of hydration and local water dynamics in micelle and vesicle assemblies.
    McCarney ER; Armstrong BD; Kausik R; Han S
    Langmuir; 2008 Sep; 24(18):10062-72. PubMed ID: 18700788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revival of the Intermolecular Nuclear Overhauser Effect for Mapping Local Protein Hydration Dynamics.
    Braun D; Schmollngruber M; Steinhauser O
    J Phys Chem Lett; 2017 Jul; 8(14):3421-3426. PubMed ID: 28686451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the molecular basis of action of the AT1 antagonist losartan using a combined NMR spectroscopy and computational approach.
    Zervou M; Cournia Z; Potamitis C; Patargias G; Durdagi S; Grdadolnik SG; Mavromoustakos T
    Biochim Biophys Acta; 2014 Mar; 1838(3):1031-46. PubMed ID: 24374319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, dynamics and hydration of the nogalamycin-d(ATGCAT)2Complex determined by NMR and molecular dynamics simulations in solution.
    Williams HE; Searle MS
    J Mol Biol; 1999 Jul; 290(3):699-716. PubMed ID: 10395824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local chemistry of the surfactant's head groups determines protein stability in reverse micelles.
    Senske M; Xu Y; Bäumer A; Schäfer S; Wirtz H; Savolainen J; Weingärtner H; Havenith M
    Phys Chem Chem Phys; 2018 Mar; 20(13):8515-8522. PubMed ID: 29537025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational spectroscopy of trehalose, sucrose, maltose, and glucose: A comprehensive study of TDSS, NQR, NOE, and DRS.
    Heid E; Honegger P; Braun D; Szabadi A; Stankovic T; Steinhauser O; Schröder C
    J Chem Phys; 2019 May; 150(17):175102. PubMed ID: 31067863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular modeling and simulation of water near model micelles: diffusion, rotational relaxation and structure at the hydration interface.
    Sterpone F; Marchetti G; Pierleoni C; Marchi M
    J Phys Chem B; 2006 Jun; 110(23):11504-10. PubMed ID: 16771426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Cetyltrimethylammonium Bromide/Hexanol Reverse Micelles by Experimentally Benchmarked Molecular Dynamics Simulations.
    Fuglestad B; Gupta K; Wand AJ; Sharp KA
    Langmuir; 2016 Feb; 32(7):1674-84. PubMed ID: 26840651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the intermolecular interactions acting in solvent-modified MEKC by Molecular Dynamics and NMR: The effect of n-butanol on the separation of diclofenac and its impurities.
    Caprini C; Pasquini B; Melani F; Del Bubba M; Giuffrida A; Calleri E; Orlandini S; Furlanetto S
    J Pharm Biomed Anal; 2018 Feb; 149():249-257. PubMed ID: 29127906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of the confinement of ubiquitin in self-assembled reverse micelles.
    Tian J; García AE
    J Chem Phys; 2011 Jun; 134(22):225101. PubMed ID: 21682536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR-NOE and MD simulation study on phospholipid membranes: dependence on membrane diameter and multiple time scale dynamics.
    Shintani M; Yoshida K; Sakuraba S; Nakahara M; Matubayasi N
    J Phys Chem B; 2011 Jul; 115(29):9106-15. PubMed ID: 21728286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein hydration in aqueous solution.
    Wüthrich K; Otting G; Liepinsh E
    Faraday Discuss; 1992; (93):35-45. PubMed ID: 1283962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of water in nonionic reverse micelles: a combined time-resolved infrared and small angle x-ray scattering study.
    van der Loop TH; Panman MR; Lotze S; Zhang J; Vad T; Bakker HJ; Sager WF; Woutersen S
    J Chem Phys; 2012 Jul; 137(4):044503. PubMed ID: 22852627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How proteins modify water dynamics.
    Persson F; Söderhjelm P; Halle B
    J Chem Phys; 2018 Jun; 148(21):215103. PubMed ID: 29884055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.