These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 31237912)

  • 1. Canonical description of wing kinematics and dynamics for a straight flying insectivorous bat (Hipposideros pratti).
    Sekhar S; Windes P; Fan X; Tafti DK
    PLoS One; 2019; 14(6):e0218672. PubMed ID: 31237912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational investigation of lift generation and power expenditure of Pratt's roundleaf bat (Hipposideros pratti) in forward flight.
    Windes P; Fan X; Bender M; Tafti DK; Müller R
    PLoS One; 2018; 13(11):e0207613. PubMed ID: 30485321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lift enhancement by bats' dynamically changing wingspan.
    Wang S; Zhang X; He G; Liu T
    J R Soc Interface; 2015 Dec; 12(113):20150821. PubMed ID: 26701882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.
    Bahlman JW; Swartz SM; Breuer KS
    Bioinspir Biomim; 2014 Jun; 9(2):025008. PubMed ID: 24851830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing-kinematics measurement and flight modelling of the bamboo weevil
    Li X; Guo C
    IET Nanobiotechnol; 2020 Feb; 14(1):53-58. PubMed ID: 31935678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
    Bergou AJ; Swartz SM; Vejdani H; Riskin DK; Reimnitz L; Taubin G; Breuer KS
    PLoS Biol; 2015; 13(11):e1002297. PubMed ID: 26569116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic effects of deviating motion of flapping wings in hovering flight.
    Kim HY; Han JS; Han JH
    Bioinspir Biomim; 2019 Feb; 14(2):026006. PubMed ID: 30616233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic and aerodynamic analysis of a bat performing a turning-ascending maneuver.
    Windes P; Tafti DK; Müller R
    Bioinspir Biomim; 2021 Feb; 16(1):016019. PubMed ID: 33586665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments.
    Wang ZJ; Birch JM; Dickinson MH
    J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a 180-degree U-turn maneuver executed by a hipposiderid bat.
    Windes P; Tafti DK; Müller R
    PLoS One; 2020; 15(11):e0241489. PubMed ID: 33141874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upstroke wing flexion and the inertial cost of bat flight.
    Riskin DK; Bergou A; Breuer KS; Swartz SM
    Proc Biol Sci; 2012 Aug; 279(1740):2945-50. PubMed ID: 22496186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model for estimating the mechanics of horizontal flapping flight in bats: model description and validation.
    Watts P; Mitchell EJ; Swartz SM
    J Exp Biol; 2001 Aug; 204(Pt 16):2873-98. PubMed ID: 11683442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamics of manoeuvring flight in brown long-eared bats (
    Henningsson P; Jakobsen L; Hedenström A
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30404906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flapping tail membrane in bats produces potentially important thrust during horizontal takeoffs and very slow flight.
    Adams RA; Snode ER; Shaw JB
    PLoS One; 2012; 7(2):e32074. PubMed ID: 22393378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.