These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31238246)

  • 21. Cellular energy utilization and molecular origin of standard metabolic rate in mammals.
    Rolfe DF; Brown GC
    Physiol Rev; 1997 Jul; 77(3):731-58. PubMed ID: 9234964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. P/O ratios of mitochondrial oxidative phosphorylation.
    Hinkle PC
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):1-11. PubMed ID: 15620362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis--invited review part 2.
    Nath S
    J Bioenerg Biomembr; 2010 Aug; 42(4):301-9. PubMed ID: 20490638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical model of regulation of oxidative phosphorylation in intact mitochondria.
    Bohnensack R; Kunz W
    Acta Biol Med Ger; 1978; 37(1):97-112. PubMed ID: 706931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of substrate activation (hydrolysis of ATP by first steps of glycolysis and beta-oxidation) on the effect of enzyme deficiencies, inhibitors, substrate shortage and energy demand on oxidative phosphorylation.
    Korzeniewski B
    Biophys Chem; 2003 May; 104(1):107-19. PubMed ID: 12834831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria.
    Lemasters JJ; Grunwald R; Emaus RK
    J Biol Chem; 1984 Mar; 259(5):3058-63. PubMed ID: 6321493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation.
    Beavis AD; Lehninger AL
    Eur J Biochem; 1986 Jul; 158(2):315-22. PubMed ID: 3015613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy landscapes and dynamics of ion translocation through membrane transporters: a meeting ground for physics, chemistry, and biology.
    Nath S
    J Biol Phys; 2021 Dec; 47(4):401-433. PubMed ID: 34792702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. P/O ratios reassessed: mitochondrial P/O ratios consistently exceed 1.5 with succinate and 2.5 with NAD-linked substrates.
    Lee CP; Gu Q; Xiong Y; Mitchell RA; Ernster L
    FASEB J; 1996 Feb; 10(2):345-50. PubMed ID: 8641569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel two-ion theory of energy coupling in ATP synthesis.
    Nath S
    Bioeng Transl Med; 2019 Jan; 4(1):164-170. PubMed ID: 30680327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between the energy cost of ATP transport and ATP synthesis in mitochondria.
    Duszyński J; Bogucka K; Letko G; Küster U; Kunz W; Wojtczak L
    Biochim Biophys Acta; 1981 Sep; 637(2):217-23. PubMed ID: 7295709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programming and regulation of metabolic homeostasis.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2015 Mar; 308(6):E506-17. PubMed ID: 25605644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy metabolism in muscle approaching maximal rates of oxygen utilization.
    Wilson DF
    Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetic aspects of transport of ADP and ATP through the mitochondrial membrane.
    Klingenberg M
    Ciba Found Symp; 1975; (31):105-24. PubMed ID: 238804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An assessment of the role of proton leaks in the mechanistic stoichiometry of oxidative phosphorylation.
    Davis EJ; Davis-van Thienen WI
    Arch Biochem Biophys; 1991 Aug; 289(1):184-6. PubMed ID: 1654845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The murburn precepts for aerobic respiration and redox homeostasis.
    Manoj KM; Bazhin NM
    Prog Biophys Mol Biol; 2021 Dec; 167():104-120. PubMed ID: 34118265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of ATP supply during muscle contraction: theoretical studies.
    Korzeniewski B
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.